OFFSET
1,1
COMMENTS
Value of lowest trit of prime(n) in balanced ternary representation (A059095) (original definition).
For p = prime(n) != 3, a(n) = +1 if p is of the form 3*k + 1, and -1 if the p is of the form 3*k - 1. - Joerg Arndt, Sep 16 2014
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
EXAMPLE
For n=20, prime(20) = 71, and we verify that -3 is not a quadratic residue modulo 71, hence a(20) = -1. Also, we see that the balanced ternary representation row A059095(71) = {1, 0, -1, 0, -1} which ends in -1.
For n=21, prime(21) = 73, and we see that x^2 = -3 mod 73 has solutions like x = 17, 56, hence a(21) = 1. Also, the balanced ternary representation row A059095(73) = {1, 0 -1, 0, 1} which ends in 1.
MATHEMATICA
A134323[n_] := (r = Mod[Prime[n], 6]; If[r == 1, 1, -1]); A134323[1] = -1; A134323[2] = 0; Table[A134323[n], {n, 1, 102}] (* Jean-François Alcover, Nov 07 2011, after Bill McEachen *)
JacobiSymbol[-3, Prime[Range[100]]] (* Alonso del Arte, Aug 02 2017 *)
PROG
(Haskell)
a134323 n = (1 - 0 ^ m) * (-1) ^ (m + 1) where m = a000040 n `mod` 3
-- Reinhard Zumkeller, Sep 16 2014
(PARI) apply(p->kronecker(-3, p), primes(100)) \\ Charles R Greathouse IV, Aug 14 2017
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Reinhard Zumkeller, Oct 21 2007
EXTENSIONS
Wording of definition changed by N. J. A. Sloane, Jun 21 2015
Name simplified by Alonso del Arte, Aug 02 2017
STATUS
approved