login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n into parts that are odd or == +- 4 mod 10.
1

%I #11 Mar 12 2021 22:24:45

%S 1,1,1,2,3,4,6,8,10,14,18,23,30,38,48,61,76,94,117,144,176,216,262,

%T 317,384,462,554,664,792,942,1120,1326,1566,1848,2174,2552,2992,3499,

%U 4084,4762,5540,6434,7464,8642,9991,11538,13302,15314,17612,20225,23196

%N Number of partitions of n into parts that are odd or == +- 4 mod 10.

%C Generating function arises naturally in Rodney Baxter's solution of the Hard Hexagon Model according to George Andrews.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%H G. C. Greubel, <a href="/A134157/b134157.txt">Table of n, a(n) for n = 0..1000</a>

%H G. E. Andrews, <a href="http://dx.doi.org/10.1090/cbms/066">q-series</a>, CBMS Regional Conference Series in Mathematics, 66, Amer. Math. Soc. 1986, see p. 7, Equ. (1.4). MR0858826 (88b:11063).

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of f(-x^2, -x^8) / f(-x, -x^2) in powers of x where f(, ) is Ramanujan's general theta function.

%F Euler transform of period 10 sequence [ 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, ...].

%F G.f.: ( Sum_{k>=0} x^(2*(k^2+k)) / ((1 - x^2) * (1 - x^4) * ... * (1 - x^(2*k))) ) / Product_{k>0} 1 - x^(2*k-1).

%F G.f.: Sum_{k>=0} x^(k*(3*k+3)/2) * (1 + x) * (1 + x^2) * ... * (1 + x^(2*k)) / ( (1 - x) * (1 - x^2) * ... * (1 - x^(2*k+1)) ).

%e G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 10*x^8 + 14*x^9 + ...

%e G.f. = q^49 + q^169 + q^289 + 2*q^409 + 3*q^529 + 4*q^649 + 6*q^769 + 8*q^889 + ...

%t a[ n_] := SeriesCoefficient[ QPochhammer[ x^2, x^10] QPochhammer[ x^8, x^10] QPochhammer[ x^10] / QPochhammer[ x], {x, 0, n}]; (* _Michael Somos_, Oct 26 2015 *)

%t a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^-{ 1, 0, 1, 1, 1, 1, 1, 0, 1, 0}[[Mod[k, 10, 1]]], {k, n}], {x, 0, n}]; (* _Michael Somos_, Oct 26 2015 *)

%o (PARI) {a(n) = my(t); if( n<0, 0, t = 1 / (1 - x) + x * O(x^n); polcoeff( sum(k=1, (sqrtint(24*n + 1) - 1)\6, t = t * x^(3*k) / ((1 - x^k) * (1 - x^(2*k + 1))) + x * O(x^n), t), n))};

%o (PARI) {a(n) = if( n<0, 0, polcoeff( 1 / prod( k=1, n, 1 - [ 0, 1, 0, 1, 1, 1, 1, 1, 0, 1][k%10 + 1] * x^k, 1 + x * O(x^n)), n))};

%K nonn

%O 0,4

%A _Michael Somos_, Oct 10 2007