login
A134153
a(n) = 15*n^2 + 9*n + 1.
11
1, 25, 79, 163, 277, 421, 595, 799, 1033, 1297, 1591, 1915, 2269, 2653, 3067, 3511, 3985, 4489, 5023, 5587, 6181, 6805, 7459, 8143, 8857, 9601, 10375, 11179, 12013, 12877, 13771, 14695, 15649, 16633, 17647, 18691, 19765, 20869, 22003, 23167
OFFSET
0,2
COMMENTS
A119617 is union of A134153 and A134154. A000538(n) is divisible by A000330(n) if and only n is congruent to {1, 3} mod 5 (see A047219). A134154(n) is case when n is congruent to 1 mod 5 see cases 2)
FORMULA
a(n) = 15*n^2 + 9*n + 1.
a(n) = (3*(5*n + 1)^2 + 3*(5*n + 1) - 1)/5.
a(n) = (Sum_{k=1..5*n+1} k^4) / (Sum_{k=1..5*n+1} k^2).
G.f.: -(1+22*x+7*x^2)/(-1+x)^3. - R. J. Mathar, Nov 14 2007
MATHEMATICA
Table[1 + 9 n + 15 n^2, {n, 0, 50}]
Table[Sum[k^4, {k, 1, 5m + 1}]/Sum[k^2, {k, 1, 5m + 1}], {m, 0, 10}]
PROG
(PARI) a(n)=15*n^2+9*n+1 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Sequence in context: A363635 A033658 A080699 * A251311 A223181 A016814
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Oct 10 2007
EXTENSIONS
Offset corrected and some punctuation added by R. J. Mathar, Jul 09 2009
STATUS
approved