OFFSET
1,5
COMMENTS
This sequence contains every increasing finite sequence. For example, the finite sequence {0,2,3,5} arises from n = 45.
In the corresponding irregular triangle {a(n)+1}, the m-th row gives all positive integer roots m_i of polynomial {m,k}. - see link [Shevelev]; see also A264613. - Vladimir Shevelev, Dec 13 2015
LINKS
Reinhard Zumkeller, Rows n = 1..1024 of triangle, flattened
Vladimir Shevelev, The number of permutations with prescribed up-down structure as a function of two variables, INTEGERS, 12 (2012), #A1. (See Section 3, Theorem 21 and Section 8, Theorem 50)
FORMULA
a(n) = A048793(n) - 1.
EXAMPLE
1 = 2^0.
2 = 2^1.
3 = 2^0 + 2^1.
4 = 2^2.
5 = 2^0 + 2^2.
etc. and reading the exponents gives the rows of the triangle.
MAPLE
A133457 := proc(n) local a, bdigs, i ; a := [] ; bdigs := convert(n, base, 2) ; for i from 1 to nops(bdigs) do if op(i, bdigs) <> 0 then a := [op(a), i-1] ; fi ; od: a ; end: seq(op(A133457(n)), n=1..80) ; # R. J. Mathar, Nov 30 2007
MATHEMATICA
Array[Join @@ Position[#, 1] - 1 &@ Reverse@ IntegerDigits[#, 2] &, 41] // Flatten (* Michael De Vlieger, Oct 08 2017 *)
PROG
(Haskell)
a133457 n k = a133457_tabf !! (n-1) !! n
a133457_row n = a133457_tabf !! (n-1)
a133457_tabf = map (fst . unzip . filter ((> 0) . snd) . zip [0..]) $
tail a030308_tabf
-- Reinhard Zumkeller, Oct 28 2013, Feb 06 2013
CROSSREFS
KEYWORD
AUTHOR
Masahiko Shin, Nov 27 2007
EXTENSIONS
More terms from R. J. Mathar, Nov 30 2007
STATUS
approved