login
A132774
A natural number operator.
3
1, 2, 3, 0, 4, 5, 0, 0, 6, 7, 0, 0, 0, 8, 9, 0, 0, 0, 0, 10, 11, 0, 0, 0, 0, 0, 12, 13, 0, 0, 0, 0, 0, 0, 14, 15, 0, 0, 0, 0, 0, 0, 0, 16, 17, 0, 0, 0, 0, 0, 0, 0, 0, 18, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 22, 23
OFFSET
1,2
COMMENTS
Row sums = A016813: (1, 5, 9, 13, ...).
A132774 * [1, 2, 3, ...] = A033951.
FORMULA
As an infinite lower triangular matrix, (1, 3, 5, ...) in the main diagonal and (2, 4, 6, ...) in the subdiagonal; with the rest zeros.
From Stefano Spezia, Dec 21 2021: (Start)
T(n, k) = 2*n - 1 if n = k, T(n, k) = 2*(n - 1) if n - k = 1, otherwise T(n, k) = 0.
G.f.: x*y*(1 + x*(2 + y))/(1 - x*y)^2. (End)
EXAMPLE
First few rows of the triangle are:
1;
2, 3;
0, 4, 5;
0, 0, 6, 7;
0, 0, 0, 8, 9;
0, 0, 0, 0, 10, 11;
...
MATHEMATICA
T[n_, k_]:=If[n==k, 2n-1, If[n-k==1, 2(n-1), 0]]; Flatten[Table[T[n, k], {n, 12}, {k, n}]] (* Stefano Spezia, Dec 21 2021 *)
Join[{1}, Flatten[{#, PadRight[{}, #[[1]]/2, 0]}&/@Partition[Range[2, 30], 2]]] (* Harvey P. Dale, Mar 24 2024 *)
Join[{1}, Flatten[Table[Join[Range[2n, 2n+1], PadRight[{}, n, 0]], {n, 20}]]] (* Harvey P. Dale, Mar 25 2024 *)
CROSSREFS
Cf. A016813 (row sums), A033951, A060747 (main diagonal).
Sequence in context: A175434 A154860 A284282 * A294721 A300816 A007945
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Aug 28 2007
EXTENSIONS
More terms from Stefano Spezia, Dec 21 2021
STATUS
approved