login
A132121
Triangle read by rows: T(n,k)=n*(n+1)*((3*k+2)*n+1)/6, 0<=k<=n.
8
0, 1, 2, 5, 11, 17, 14, 32, 50, 68, 30, 70, 110, 150, 190, 55, 130, 205, 280, 355, 430, 91, 217, 343, 469, 595, 721, 847, 140, 336, 532, 728, 924, 1120, 1316, 1512, 204, 492, 780, 1068, 1356, 1644, 1932, 2220, 2508, 285, 690, 1095, 1500, 1905, 2310, 2715, 3120
OFFSET
0,3
COMMENTS
Row sums give A132122; central terms give A132123
T(n,0) = A000330(n);
T(n,1) = A033994(n) for n>0;
T(n,2) = A132124(n) for n>1;
T(n,3) = A132112(n) for n>2;
T(n,4) = A050409(n) for n>3.
FORMULA
G.f.: Sum_{n>=0} Sum_{k>=0} T(n,k)*x^n*y^k = x*(x*y+1+x)/((1-x)^4*(1-y)^2). - R. J. Mathar, Jul 28 2016. Note that this generates a full array, not just the triangular subspace.
EXAMPLE
0;
1, 2;
5, 11, 17;
14, 32, 50, 68;
30, 70, 110, 150, 190;
55, 130, 205, 280, 355, 430;
91, 217, 343, 469, 595, 721, 847;
140, 336, 532, 728, 924, 1120, 1316, 1512;
204, 492, 780, 1068, 1356, 1644, 1932, 2220, 2508;
MAPLE
A132121 := proc(n, k)
n*(n+1)*((3*k+2)*n+1)/6 ;
end proc:
seq(seq(A132121(n, k), k=0..n), n=0..13) ; # R. J. Mathar, Feb 19 2020
CROSSREFS
Sequence in context: A359399 A118660 A009770 * A070957 A166744 A080165
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Aug 12 2007
STATUS
approved