login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130262
Partial sums of the 'upper' even Fibonacci Inverse A130260.
4
0, 1, 3, 5, 8, 11, 14, 17, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 77, 82, 87, 92, 97, 102, 107, 112, 117, 122, 127, 132, 137, 142, 147, 152, 157, 162, 167, 172, 177, 182, 187, 192, 197, 202, 207, 212, 217, 222, 227, 232, 237, 242, 248, 254, 260, 266
OFFSET
0,3
LINKS
FORMULA
a(n) = n*A130260(n) - A001519(A130260(n)) + 1.
a(n) = n*A130260(n) - Fib(2*A130260(n)-1) + 1.
G.f.: g(x)=x/(1-x)^2*Sum_{k>=0} x^Fib(2*k).
MATHEMATICA
Table[Sum[Ceiling[Log[GoldenRatio, Sqrt[5]*k]/2], {k, 1, n}], {n, 0, 50}] (* G. C. Greubel, Sep 12 218 *)
PROG
(PARI) for(n=0, 50, print1(sum(k=1, n, ceil(log(sqrt(5)*k)/(2*log((1+ sqrt(5))/2)))), ", ")) \\ G. C. Greubel, Sep 12 2018
(Magma) [0] cat [(&+[ Ceiling(Log(Sqrt(5)*k)/(2*Log((1+ Sqrt(5))/2))): k in [1..n]]): n in [1..50]]; // G. C. Greubel, Sep 12 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, May 25 2007
STATUS
approved