OFFSET
0,4
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10000
FORMULA
a(n) = floor(arcsinh(sqrt(5)*n/2)/(2*log(phi))), where phi=(1+sqrt(5))/2.
a(n) = A130260(n+1) - 1.
G.f.: g(x) = 1/(1-x)*Sum_{k>=1} x^Fibonacci(2*k).
a(n) = floor(1/2*log_phi(sqrt(5)*n+1)) for n>=0.
MATHEMATICA
Table[Floor[1/2*Log[GoldenRatio, (Sqrt[5]*n + 1)]], {n, 0, 100}] (* G. C. Greubel, Sep 12 2018 *)
PROG
(PARI) vector(100, n, n--; floor(log((sqrt(5)*n+1))/(2*log((1+sqrt(5))/2) ))) \\ G. C. Greubel, Sep 12 2018
(Magma) [Floor(Log((Sqrt(5)*n+1))/(2*Log((1+Sqrt(5))/2))): n in [0..100]]; // G. C. Greubel, Sep 12 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, May 25 2007, Jul 02 2007
STATUS
approved