login
A129805
Primes congruent to +-1 mod 18.
13
17, 19, 37, 53, 71, 73, 89, 107, 109, 127, 163, 179, 181, 197, 199, 233, 251, 269, 271, 307, 359, 379, 397, 431, 433, 449, 467, 487, 503, 521, 523, 541, 557, 577, 593, 613, 631, 647, 683, 701, 719, 739, 757, 773, 809, 811, 827, 829, 863, 881, 883, 919, 937, 953, 971, 991
OFFSET
1,1
COMMENTS
From Katherine E. Stange, Feb 03 2010: (Start)
Equivalently, primes p such that the smallest extension of F_p containing the cube roots of unity also contains the 9th roots of unity.
Equivalently, the primes p for which, if p^t = 1 mod 3, then p^t = 1 mod 9.
Equivalently, primes congruent to +/-1 modulo 9.
Membership or non-membership of the prime p in this sequence and sequence A002144 (primes congruent to 1 mod 4; equivalently, primes p such that the smallest extension of F_p containing the square roots of unity contains the 4th roots of unity) appear to determine the behavior of amicable pairs on the elliptic curve y^2 = x^3 + p (Silverman, Stange 2009). (End)
Primes in A056020. - Reinhard Zumkeller, Jan 07 2012
Primes congruent to (1,17) mod 18. - Vincenzo Librandi, Aug 14 2012
Equivalently, primes such that p^2 == 1 (mod 9). - M. F. Hasler, Apr 16 2022
LINKS
Emma Lehmer, On special primes, Pac. J. Math., 118 (1985), 471-478.
J. H. Silverman and K. E. Stange. Amicable pairs and aliquot cycles for elliptic curves, arxiv:0912.1831 [math.NT], 2009.
MATHEMATICA
Union[Join[Select[Range[-1, 3000, 18], PrimeQ], Select[Range[1, 3000, 18], PrimeQ]]] (* Vladimir Joseph Stephan Orlovsky, Feb 18 2012 *)
Select[Prime[Range[4000]], MemberQ[{1, 17}, Mod[#, 18]]&] (* Vincenzo Librandi, Aug 14 2012 *)
PROG
(Haskell)
a129805 n = a129805_list !! (n-1)
a129805_list = [x | x <- a056020_list, a010051 x == 1]
-- Reinhard Zumkeller, Jan 07 2012
(Magma) [ p: p in PrimesUpTo(1300) | p mod 18 in {1, 17} ]; // Vincenzo Librandi, Aug 14 2012
(PARI) select( {is_A129805(n)=n^2%9==1&&isprime(n)}, primes(199)) \\ M. F. Hasler, Apr 16 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 22 2007
STATUS
approved