login
A129325
Fourth column of PE^2.
14
0, 0, 0, 1, 8, 60, 440, 3290, 25424, 204120, 1705680, 14836470, 134240040, 1262060228, 12313382536, 124509169330, 1303109358880, 14098102762160, 157473907149600, 1813923418494126, 21523529286435000, 262809607270736540
OFFSET
0,5
COMMENTS
Base matrix is in A011971; second power is in A078937; third power is in A078938; fourth power is in A078939.
FORMULA
PE=exp(matpascal(5))/exp(1); A = PE^2; a(n)=A[n,4] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^2; a(n)=A[n,4]
MAPLE
A056857 := proc(n, c) combinat[bell](n-1-c)*binomial(n-1, c) ; end: A078937 := proc(n, c) add( A056857(n, k)*A056857(k+1, c), k=0..n) ; end: A129325 := proc(n) A078937(n+1, 3) ; end: seq(A129325(n), n=0..27) ; # R. J. Mathar, May 30 2008
MATHEMATICA
A056857[n_, c_] := If[n <= c, 0, BellB[n - 1 - c] Binomial[n - 1, c]];
A078937[n_, c_] := Sum[A056857[n, k] A056857[k + 1, c], {k, 0, n}];
a[n_] := A078937[n + 1, 3];
a /@ Range[0, 21] (* Jean-François Alcover, Mar 24 2020, after R. J. Mathar *)
PROG
(PARI) m=matpascal(30)-matid(31); pe=matid(31)+sum(i=1, 30, m^i/i!); A=pe^2; A[, 4] \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2008
KEYWORD
nonn,easy
AUTHOR
Gottfried Helms, Apr 08 2007
EXTENSIONS
More terms from R. J. Mathar and Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2008
STATUS
approved