login
A128434
Triangle, read by rows, T(n,k) = denominator of the maximum of the k-th Bernstein polynomial of degree n; numerator is A128433.
11
1, 1, 1, 1, 2, 1, 1, 9, 9, 1, 1, 64, 8, 64, 1, 1, 625, 625, 625, 625, 1, 1, 7776, 243, 16, 243, 7776, 1, 1, 117649, 117649, 117649, 117649, 117649, 117649, 1, 1, 2097152, 16384, 2097152, 128, 2097152, 16384, 2097152, 1, 1, 43046721, 43046721, 6561, 43046721, 43046721, 6561, 43046721, 43046721, 1
OFFSET
0,5
LINKS
Eric Weisstein's World of Mathematics, Bernstein Polynomial
FORMULA
A128433(n,k)/T(n,k) = binomial(n,k) * k^k * (n-k)^(n-k) / n^n.
For n>0: Sum_{k=0..n} A128433(n,k)/T(n,k) = A090878(n)/A036505(n-1);
T(n, n-k) = T(n,k).
T(n, 0) = T(n, n) = 1.
for n>0: A128433(n,1)/T(n,1) = A000312(n-1)/A000169(n).
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 9, 9, 1;
1, 64, 8, 64, 1;
1, 625, 625, 625, 625, 1;
1, 7776 243, 16, 243, 7776, 1;
1, 117649, 117649, 117649, 117649, 117649, 117649, 1;
1, 2097152, 16384, 2097152, 128, 2097152, 16384, 2097152, 1;
MATHEMATICA
B[n_, k_]:= If[k==0 || k==n, 1, Binomial[n, k]*k^k*(n-k)^(n-k)/n^n];
T[n_, k_]= Denominator[B[n, k]];
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 19 2021 *)
PROG
(Sage)
def B(n, k): return 1 if (k==0 or k==n) else binomial(n, k)*k^k*(n-k)^(n-k)/n^n
def T(n, k): return denominator(B(n, k))
flatten([[T(n, k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jul 19 2021
CROSSREFS
KEYWORD
nonn,tabl,frac
AUTHOR
Reinhard Zumkeller, Mar 03 2007
STATUS
approved