login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036505
Numerator of (n+1)^n/n!.
8
1, 2, 9, 32, 625, 324, 117649, 131072, 4782969, 1562500, 25937424601, 35831808, 23298085122481, 110730297608, 4805419921875, 562949953421312, 48661191875666868481, 91507169819844, 104127350297911241532841, 640000000000000000, 865405750887126927009
OFFSET
0,2
COMMENTS
Also denominator of Sum_{k=0..n} binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k) [Prodinger]. - N. J. A. Sloane, Jul 31 2013
LINKS
Helmut Prodinger, An identity conjectured by Lacasse via the tree function, Electronic Journal of Combinatorics, 20(3) (2013), #P7.
FORMULA
a(n) = A090878(n+1)/Sum_{k=0..n+1} (A128433(n+1)/A128434(n+1)). - Reinhard Zumkeller, Mar 03 2007
G.f.: -x*e^(-LambertW(-x))/((LambertW(-x)+1)*LambertW(-x)). - Vladimir Kruchinin, Feb 04 2013
A simpler g.f. is 1/(1 + LambertW(-x)). - Jean-François Alcover, Feb 04 2013
MAPLE
a:=n -> numer((n+1)^n/factorial(n)): A036505 := [seq(a(n), n=0..20)]; # Muniru A Asiru, Feb 12 2018
MATHEMATICA
CoefficientList[Series[1/(1 + ProductLog[-x]), {x, 0, 21}], x] // Numerator // Rest (* Jean-François Alcover, Feb 04 2013, after Vladimir Kruchinin *)
PROG
(Magma) [Numerator((n+1)^n/Factorial(n)): n in [0..20]]; // Vincenzo Librandi, Sep 10 2013
(GAP) List([0..20], n -> NumeratorRat((n+1)^n/Factorial(n))); # Muniru A Asiru, Feb 12 2018
(PARI) my(x='x+O('x^30)); apply(x -> numerator(x), Vec(-1+1/(1+lambertw(-x)))) \\ G. C. Greubel and Michel Marcus, Feb 08 2019
(Sage) [numerator((n+1)^n/factorial(n)) for n in (0..20)] # G. C. Greubel, Feb 08 2019
CROSSREFS
Cf. A095996 (denominators).
Sequence in context: A335577 A338437 A296151 * A264234 A056916 A139628
KEYWORD
nonn,frac
STATUS
approved