login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125981
Signature-permutation of Deutsch's 2000 bijection on ordered trees.
3
0, 1, 3, 2, 7, 8, 5, 6, 4, 17, 18, 20, 22, 21, 12, 13, 15, 16, 19, 10, 11, 14, 9, 45, 46, 48, 50, 49, 54, 55, 61, 63, 64, 57, 59, 62, 58, 31, 32, 34, 36, 35, 40, 41, 43, 44, 47, 52, 53, 60, 56, 26, 27, 29, 30, 33, 38, 39, 42, 51, 24, 25, 28, 37, 23, 129, 130, 132, 134, 133
OFFSET
0,3
COMMENTS
Deutsch shows in his 2000 paper that this automorphism converts any ordered tree with the number of nodes having degree q to a tree with an equal number of odd-level nodes having degree q-1, from which it follows that, for each positive integer q, the parameters "number of nodes of degree q" and "number of odd-level nodes of degree q-1" are equidistributed. He also shows that this automorphism converts any tree with k leaves to a tree with k even-level nodes, i.e., in OEIS terms, A057514(n) = A126305(A125981(n)).
To obtain the signature permutation, we apply the given Scheme-function *A125981 to the parenthesizations as encoded and ordered by A014486/A063171 (and surrounded by extra pair of parentheses to make a valid Scheme-list) and for each n, we record the position of the resulting parenthesization (after discarding the outermost parentheses from the Scheme-list) in A014486/A063171 and this value will be a(n).
PROG
(Scheme implementation of this automorphism that acts on S-expressions, i.e. list-structures:) (define (*A125981 s) (cond ((null? s) s) (else (append (*A125981 (car s)) (list (map *A125981 (cdr s)))))))
CROSSREFS
Inverse: A125982. The number of cycles, maximum cycle sizes and LCM's of all cycle sizes in range [A014137(n-1)..A014138(n-1)] of this permutation seem to be given by A089411, A086586 and A089412, thus this is probably a conjugate of A074683/A074684. A125983 gives the A057163-conjugate.
Sequence in context: A057161 A130363 A089862 * A122326 A130996 A125984
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 02 2007
STATUS
approved