login
A125715
a(1)=1. a(n) = the smallest positive integer not occurring earlier in the sequence such that (sum{k=1 to n-1} a(k)) is congruent to a(n) (mod n).
3
1, 3, 4, 8, 6, 10, 11, 19, 17, 9, 22, 2, 21, 7, 5, 33, 25, 23, 36, 42, 31, 27, 40, 18, 20, 24, 32, 48, 51, 55, 30, 72, 26, 64, 37, 15, 43, 63, 103, 143, 16, 44, 59, 45, 60, 90, 56, 80, 79, 75, 14, 96, 52, 68, 100, 108, 65, 91, 84, 128, 94, 146, 61, 13, 110, 176, 107, 99, 12, 114
OFFSET
1,2
COMMENTS
This sequence seems likely to be a permutation of the positive integers.
MATHEMATICA
f[l_List] := Block[{n = Length[l] + 1, k = Mod[Plus @@ l, n, 1]}, While[MemberQ[l, k], k += n]; Append[l, k]]; Nest[f, {1}, 70] (* Ray Chandler, Feb 04 2007 *)
PROG
(PARI) {Quet_p1(n)=/* Permutation sequence a'la Leroy Quet, A125715 */local(x=[1], s=1, k=0, w=1); for(i=2, n, if((k=s%i)==0, k=i); while(bittest(w, k-1)>0, k+=i); x=concat(x, k); s+=k; w+=2^(k-1)); return(x)}
CROSSREFS
Sequence in context: A213954 A357067 A074212 * A129283 A332844 A347228
KEYWORD
nonn
AUTHOR
Leroy Quet, Feb 01 2007
EXTENSIONS
Extended by Ray Chandler, Feb 04 2007
STATUS
approved