login
A125138
a(n) = smallest m such that prime(n) divides Sum_{i=1..m} i!, or -1 if no such m exists.
4
-1, 2, -1, -1, 4, -1, 5, -1, 12, 19, -1, 24, 32, 19, -1, 20, -1, -1, 20, -1, 7, 57, -1, -1, 6, 83, -1, 15, 33, -1, 38, 9, -1, 23, 70, 71, 57, 17, -1, 26, -1, -1, 28, -1, -1, 56, 67, -1, -1, 73, -1, 75, -1, 114, 177, 76, -1, 137, -1, 76, 29, 172, 132, 87, 265, -1, 52, 142, 9, 76, -1, 311, -1, 209, 37, 149, 115, 227, -1, 370, -1, 333, -1
OFFSET
1,2
COMMENTS
One need only check values of m < prime(n).
This takes values -1 at A056985 and values given in A056984 at the primes listed in A056983.
REFERENCES
F. Smarandache, Definitions solved and unsolved problems, conjectures and theorems in number theory and geometry, edited by M. Perez, Xiquan Publishing House, 2000.
MAPLE
A125138 := proc(n) local p, m ; p := ithprime(n) ; for m from 1 to p do if A007489(m) mod p = 0 then RETURN(m) ; end if ; end do ; RETURN(-1) ; end proc: # R. J. Mathar, Mar 14 2007
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Jan 21 2007
EXTENSIONS
More terms from R. J. Mathar, Mar 14 2007
STATUS
approved