login
A124707
Number of base 14 circular n-digit numbers with adjacent digits differing by 1 or less.
0
1, 14, 40, 92, 244, 644, 1750, 4802, 13324, 37244, 104770, 296222, 841114, 2396954, 6851920, 19639652, 56426044, 162453884, 468581890, 1353822062, 3917298334, 11350084334, 32926503100, 95626832432, 278010277474, 809008239794
OFFSET
0,2
COMMENTS
[Empirical] a(base,n)=a(base-1,n)+A002426(n+1) for base>=1.int(n/2)+1
a(n) = T(n, 14) where T(n, k) = Sum_{j=1..k} (1+2*cos(j*Pi/(k+1)))^n. These are the number of smooth cyclic words of length n over the alphabet {1,2,..,14}. See theorem 3.3 in Knopfmacher and others, reference in A124696. - Peter Luschny, Aug 13 2012
PROG
(S/R) stvar $[N]:(0..M-1) init $[]:=0 asgn $[]->{*} kill +[i in 0..N-1](($[i]`-$[(i+1)mod N]`>1)+($[(i+1)mod N]`-$[i]`>1))
CROSSREFS
Sequence in context: A019063 A101740 A069126 * A126368 A125816 A105869
KEYWORD
nonn,base
AUTHOR
R. H. Hardin, Dec 28 2006
STATUS
approved