# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a124707 Showing 1-1 of 1 %I A124707 #10 Aug 13 2012 11:19:46 %S A124707 1,14,40,92,244,644,1750,4802,13324,37244,104770,296222,841114, %T A124707 2396954,6851920,19639652,56426044,162453884,468581890,1353822062, %U A124707 3917298334,11350084334,32926503100,95626832432,278010277474,809008239794 %N A124707 Number of base 14 circular n-digit numbers with adjacent digits differing by 1 or less. %C A124707 [Empirical] a(base,n)=a(base-1,n)+A002426(n+1) for base>=1.int(n/2)+1 %C A124707 a(n) = T(n, 14) where T(n, k) = Sum_{j=1..k} (1+2*cos(j*Pi/(k+1)))^n. These are the number of smooth cyclic words of length n over the alphabet {1,2,..,14}. See theorem 3.3 in Knopfmacher and others, reference in A124696. - _Peter Luschny_, Aug 13 2012 %o A124707 (S/R) stvar $[N]:(0..M-1) init $[]:=0 asgn $[]->{*} kill +[i in 0..N-1](($[i]`-$[(i+1)mod N]`>1)+($[(i+1)mod N]`-$[i]`>1)) %K A124707 nonn,base %O A124707 0,2 %A A124707 _R. H. Hardin_, Dec 28 2006 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE