login
A122784
Nonprimes k such that 7^k == 7 (mod k).
4
1, 6, 14, 21, 25, 42, 105, 133, 231, 301, 325, 525, 561, 703, 817, 1105, 1729, 1825, 2101, 2353, 2465, 2821, 3277, 3325, 3486, 3913, 4011, 4525, 4825, 5565, 5719, 5901, 6601, 6697, 7525, 8321, 8911, 9331, 10225, 10325, 10585, 10621, 11041, 11521
OFFSET
1,2
COMMENTS
Theorem: If both numbers q and 2q-1 are primes then q*(2q-1) is in the sequence iff q=2 or mod(q,14) is in the set {1, 5, 13}. 6, 703, 18721, 38503, 88831, 104653, 146611, 188191,... are such terms.
LINKS
MATHEMATICA
Select[Range[20000], ! PrimeQ[#] && PowerMod[7, #, #] == Mod[7, #] &]
With[{nn=12000}, Select[Complement[Range[nn], Prime[Range[PrimePi[ nn]]]], PowerMod[7, #, #]==Mod[7, #]&]] (* Harvey P. Dale, Jul 12 2012 *)
KEYWORD
nonn
AUTHOR
Farideh Firoozbakht, Sep 12 2006
STATUS
approved