login
A005938
Pseudoprimes to base 7.
(Formerly M4168)
18
6, 25, 325, 561, 703, 817, 1105, 1825, 2101, 2353, 2465, 3277, 4525, 4825, 6697, 8321, 10225, 10585, 10621, 11041, 11521, 12025, 13665, 14089, 16725, 16806, 18721, 19345, 20197, 20417, 20425, 22945, 25829, 26419, 29234, 29341, 29857, 29891, 30025, 30811, 33227
OFFSET
1,1
COMMENTS
According to Karsten Meyer, May 16 2006, 6 should be excluded, following the strict definition in Crandall and Pomerance.
Theorem: If both numbers q & 2q-1 are primes(q is in the sequence A005382) and n=q*(2q-1) then 7^(n-1)==1 (mod 7)(n is in the sequence) iff q=2 or mod(q,14) is in the set {1, 5, 13}. 6,703,18721,38503,88831,104653,146611,188191,... are such terms. This sequence is a subsequence of A122784. - Farideh Firoozbakht, Sep 14 2006
Composite numbers n such that 7^(n-1) == 1 (mod n).
REFERENCES
R. Crandall and C. Pomerance, "Prime Numbers - A Computational Perspective", Second Edition, Springer Verlag 2005, ISBN 0-387-25282-7 Page 132 (Theorem 3.4.2. and Algorithm 3.4.3)
R. K. Guy, Unsolved Problems in Number Theory, A12.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. J. Mathar, T. D. Noe and Hiroaki Yamanouchi, Table of n, a(n) for n = 1..87448 (terms a(1)-a(697) from R. J. Mathar, a(698)-a(1000) from T. D. Noe)
C. Pomerance & N. J. A. Sloane, Correspondence, 1991
MATHEMATICA
Select[Range[31000], ! PrimeQ[ # ] && PowerMod[7, (# - 1), # ] == 1 &] (* Farideh Firoozbakht, Sep 14 2006 *)
PROG
(Python)
from sympy import isprime
def ok(n): return pow(7, n-1, n) == 1 and not isprime(n)
print(list(filter(ok, range(1, 34000)))) # Michael S. Branicky, Jun 25 2021
CROSSREFS
Pseudoprimes to other bases: A001567 (2), A005935 (3), A005936 (5), A005937 (6), A005939 (10).
Sequence in context: A356909 A090566 A041064 * A157025 A174401 A329819
KEYWORD
nonn
AUTHOR
STATUS
approved