login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122214
Numerators in infinite products for Pi/2, e and e^gamma (reduced).
7
1, 2, 4, 32, 4096, 67108864, 4503599627370496, 2535301200456458802993406410752, 4084620902943761579745625423246687265522976897405582347410338578593480704
OFFSET
1,2
LINKS
Mohammad K. Azarian, Euler's Number Via Difference Equations, International Journal of Contemporary Mathematical Sciences, Vol. 7, 2012, No. 22, pp. 1095-1102.
J. Guillera and Jonathan Sondow, Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent, arXiv:math/0506319 [math.NT], 2005-2006; Ramanujan J. 16 (2008) 247-270.
Jonathan Sondow, A faster product for Pi and a new integral for ln Pi/2, arXiv:math/0401406 [math.NT], 2004.
Jonathan Sondow, A faster product for Pi and a new integral for ln Pi/2, Amer. Math. Monthly 112 (2005) 729-734.
FORMULA
a(n) = numerator(Product_{k=1..n} k^((-1)^k*binomial(n-1,k-1))).
For n >= 2, a(n) = numerator(exp(-2*Integral_{x=0..1} x^(2*n-1)/log(1-x^2) dx)) (see Mathematica code below). - John M. Campbell, Jul 18 2011
For n >= 2, a(n) = numerator(exp((1/n)*Integral_{x=0..oo} (1-exp(-1/x))^n dx)). - Federico Provvedi, Jun 29 2023
EXAMPLE
Pi/2 = (2/1)^(1/2) * (4/3)^(1/4) * (32/27)^(1/8) * (4096/3645)^(1/16) * ...,
e = (2/1)^(1/1) * (4/3)^(1/2) * (32/27)^(1/3) * (4096/3645)^(1/4) * ... and
e^gamma = (2/1)^(1/2) * (4/3)^(1/3) * (32/27)^(1/4) * (4096/3645)^(1/5) * ....
MATHEMATICA
Table[Exp[-2*Integrate[x^(2n-1)/Log[1-x^2], {x, 0, 1}]], {n, 2, 8}]
Numerator@Exp@Join[{0}, Integrate[(1-Exp[-(#*x)^-1])^#, {x, 0, Infinity}]&/@Range[2, 10]] (* Federico Provvedi, Jun 29 2023 *)
PROG
(PARI) {a(n) = numerator(prod(k=1, n, k^((-1)^k*binomial(n-1, k-1))))} \\ Seiichi Manyama, Mar 10 2019
CROSSREFS
Cf. A092798. Denominators are A122215. Unreduced numerators are A122216.
Sequence in context: A012509 A062740 A336832 * A122216 A100117 A073888
KEYWORD
frac,nonn
AUTHOR
Jonathan Sondow, Aug 26 2006
STATUS
approved