login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092798
Numerator of partial products in an approximation of Pi/2.
4
2, 16, 8192, 274877906944, 5070602400912917605986812821504, 115792089237316195423570985008687907853269984665640564039457584007913129639936
OFFSET
1,1
LINKS
J. Guillera and J. Sondow, Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent, Ramanujan J. 16 (2008) 247-270; arXiv:math/0506319 [math.NT], 2005-2006.
J. Sondow, A faster product for Pi and a new integral for ln(Pi/2), arXiv:math/0401406 [math.NT], 2004.
J. Sondow, A faster product for Pi and a new integral for ln(Pi/2), Amer. Math. Monthly 112 (2005), 729-734 and 113 (2006), 670.
FORMULA
a(n) = Product_{k=1..n+1} A122214(k)^2^(n-k+1). - Jonathan Sondow, Sep 13 2006
a(n) = Numerator(Product_{k=1..n+1} (A122216(k)/A122217(k))^2^(n-k+1)). - Jonathan Sondow, Sep 13 2006
EXAMPLE
The first approximations are 2^(1/2), (16/3)^(1/4), (8192/243)^(1/8), (274877906944/215233605)^(1/16).
PROG
(PARI) for(m=1, 7, p=1; for(n=1, m, p=p*p*(prod(k=1, ceil(n/2), (2*k)^binomial(n, 2*k-1))/(prod(k=1, floor(n/2)+1, (2*k-1)^binomial(n, 2*k-2))))); print1(numerator(p), ", "))
CROSSREFS
Denominators are in A092799.
Sequence in context: A306729 A325049 A334912 * A333540 A258169 A325048
KEYWORD
nonn,easy,frac
AUTHOR
Ralf Stephan, Mar 05 2004
STATUS
approved