OFFSET
-1,2
COMMENTS
LINKS
Seiichi Manyama, Table of n, a(n) for n = -1..10000 (terms -1..146 from G. A. Edgar)
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (1/q) * (chi(-q^3) / chi(-q))^12 in powers of q where chi() is a Ramanujan theta function.
Expansion of (eta(q^2) * eta(q^3) / (eta(q) * eta(q^6)))^12 in powers of q.
Euler transform of period 6 sequence [ 12, 0, 0, 0, 12, 0, ...].
G.f.: (1/x) * (Product_{k>0} (1 - x^k + x^(2*k)))^-12.
Expansion of ((c(q) * b(q^2)) / (c(q^2) * b(q)))^3 in powers of q where b(), c() are cubic AGM theta functions.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u^2 - v) * (w^2 - v) - u*w * (24*(1 + v^2) + 152*v).
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = f(t) where q = exp(2 Pi i t).
Convolution inverse is A226235. Convolution square of A058484. Convolution cube of A058539. - Michael Somos, Feb 19 2015
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (2^(3/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 10 2015
EXAMPLE
T6B = 1/q + 12 + 78*q + 364*q^2 + 1365*q^3 + 4380*q^4 + 12520*q^5 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1/q (QPochhammer[ -q, q] / QPochhammer[ -q^3, q^3])^12, {q, 0, n}]; (* Michael Somos, Apr 26 2015 *)
a[ n_] := SeriesCoefficient[ 1/q (QPochhammer[ q^2] QPochhammer[ q^3] / (QPochhammer[ q] QPochhammer[ q^6]))^12, {q, 0, n}]; (* Michael Somos, Apr 26 2015 *)
nmax = 50; CoefficientList[Series[Product[((1+x^(3*k-1))*(1+x^(3*k-2)))^12, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 10 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^3 + A) / (eta(x+A) * eta(x^6 + A)))^12, n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 14 2006
STATUS
approved