login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121665
McKay-Thompson series of class 6B for the Monster group with a(0) = 12.
6
1, 12, 78, 364, 1365, 4380, 12520, 32772, 80094, 185276, 409578, 871272, 1792754, 3582708, 6977100, 13277472, 24747867, 45267324, 81389908, 144048396, 251265288, 432425864, 734953116, 1234647216, 2051576037, 3374318100
OFFSET
-1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
Seiichi Manyama, Table of n, a(n) for n = -1..10000 (terms -1..146 from G. A. Edgar)
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (1/q) * (chi(-q^3) / chi(-q))^12 in powers of q where chi() is a Ramanujan theta function.
Expansion of (eta(q^2) * eta(q^3) / (eta(q) * eta(q^6)))^12 in powers of q.
Euler transform of period 6 sequence [ 12, 0, 0, 0, 12, 0, ...].
G.f.: (1/x) * (Product_{k>0} (1 - x^k + x^(2*k)))^-12.
Expansion of ((c(q) * b(q^2)) / (c(q^2) * b(q)))^3 in powers of q where b(), c() are cubic AGM theta functions.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u^2 - v) * (w^2 - v) - u*w * (24*(1 + v^2) + 152*v).
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = f(t) where q = exp(2 Pi i t).
a(n) = A007255(n) = A045485(n) except for n=0.
Convolution inverse is A226235. Convolution square of A058484. Convolution cube of A058539. - Michael Somos, Feb 19 2015
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (2^(3/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 10 2015
EXAMPLE
T6B = 1/q + 12 + 78*q + 364*q^2 + 1365*q^3 + 4380*q^4 + 12520*q^5 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1/q (QPochhammer[ -q, q] / QPochhammer[ -q^3, q^3])^12, {q, 0, n}]; (* Michael Somos, Apr 26 2015 *)
a[ n_] := SeriesCoefficient[ 1/q (QPochhammer[ q^2] QPochhammer[ q^3] / (QPochhammer[ q] QPochhammer[ q^6]))^12, {q, 0, n}]; (* Michael Somos, Apr 26 2015 *)
nmax = 50; CoefficientList[Series[Product[((1+x^(3*k-1))*(1+x^(3*k-2)))^12, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 10 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^3 + A) / (eta(x+A) * eta(x^6 + A)))^12, n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 14 2006
STATUS
approved