OFFSET
0,2
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
From Colin Barker, Jan 06 2017: (Start)
a(n) = (604800 + 2286636*n^2 + 696905*n^4 + 39963*n^6 + 495*n^8 + n^10) / 302400 for n>0.
G.f.: (1 + x)*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)*(1 - x^2 + x^4) / (1 - x)^11.
(End)
E.g.f.: -1 + (604800 +3024000*x +8467200*x^2 +8265600*x^3 +4170600*x^4 + 1161720*x^5 +194460*x^6 +19740*x^7 +1245*x^8 +45*x^9 +x^10)* exp(x) / 302400. - G. C. Greubel, Nov 07 2019
MAPLE
1, seq((604800 + 2286636*n^2 + 696905*n^4 + 39963*n^6 + 495*n^8 + n^10)/302400, n=1..40); # G. C. Greubel, Nov 07 2019
MATHEMATICA
Table[If[n==0, 1, (604800 + 2286636*n^2 + 696905*n^4 + 39963*n^6 + 495*n^8 + n^10)/302400], {n, 0, 40}] (* G. C. Greubel, Nov 07 2019 *)
PROG
(PARI) Vec((1 + x)*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)*(1 - x^2 + x^4) / (1 - x)^11 + O(x^30)) \\ Colin Barker, Jan 06 2017
(Magma) [1] cat [(604800 + 2286636*n^2 + 696905*n^4 + 39963*n^6 + 495*n^8 + n^10)/302400: n in [1..40]]; // G. C. Greubel, Nov 07 2019
(Sage) [1]+[(604800 + 2286636*n^2 + 696905*n^4 + 39963*n^6 + 495*n^8 + n^10)/302400 for n in (1..40)] # G. C. Greubel, Nov 07 2019
(GAP) Concatenation([1], List([1..40], n-> (604800 + 2286636*n^2 + 696905*n^4 + 39963*n^6 + 495*n^8 + n^10)/302400 )); # G. C. Greubel, Nov 07 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved