login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008494
Expansion of (1-x^12) / (1-x)^12.
2
1, 12, 78, 364, 1365, 4368, 12376, 31824, 75582, 167960, 352716, 705432, 1352077, 2496132, 4457322, 7725796, 13036530, 21469812, 34584914, 54595476, 84596733, 128856520, 193184004, 285392328, 415873822, 598309152, 850534752, 1195596128, 1663018149
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
From Colin Barker, Jan 06 2017: (Start)
a(n) = (604800 + 2286636*n^2 + 696905*n^4 + 39963*n^6 + 495*n^8 + n^10) / 302400 for n>0.
G.f.: (1 + x)*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)*(1 - x^2 + x^4) / (1 - x)^11.
(End)
E.g.f.: -1 + (604800 +3024000*x +8467200*x^2 +8265600*x^3 +4170600*x^4 + 1161720*x^5 +194460*x^6 +19740*x^7 +1245*x^8 +45*x^9 +x^10)* exp(x) / 302400. - G. C. Greubel, Nov 07 2019
MAPLE
1, seq((604800 + 2286636*n^2 + 696905*n^4 + 39963*n^6 + 495*n^8 + n^10)/302400, n=1..40); # G. C. Greubel, Nov 07 2019
MATHEMATICA
Table[If[n==0, 1, (604800 + 2286636*n^2 + 696905*n^4 + 39963*n^6 + 495*n^8 + n^10)/302400], {n, 0, 40}] (* G. C. Greubel, Nov 07 2019 *)
PROG
(PARI) Vec((1 + x)*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)*(1 - x^2 + x^4) / (1 - x)^11 + O(x^30)) \\ Colin Barker, Jan 06 2017
(Magma) [1] cat [(604800 + 2286636*n^2 + 696905*n^4 + 39963*n^6 + 495*n^8 + n^10)/302400: n in [1..40]]; // G. C. Greubel, Nov 07 2019
(Sage) [1]+[(604800 + 2286636*n^2 + 696905*n^4 + 39963*n^6 + 495*n^8 + n^10)/302400 for n in (1..40)] # G. C. Greubel, Nov 07 2019
(GAP) Concatenation([1], List([1..40], n-> (604800 + 2286636*n^2 + 696905*n^4 + 39963*n^6 + 495*n^8 + n^10)/302400 )); # G. C. Greubel, Nov 07 2019
CROSSREFS
Sequence in context: A268793 A162629 A008504 * A001288 A290894 A121665
KEYWORD
nonn,easy
STATUS
approved