Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Mar 12 2021 22:24:44
%S 1,3,6,13,24,42,73,123,201,320,504,774,1172,1755,2592,3789,5478,7851,
%T 11146,15696,21942,30456,42000,57546,78403,106212,143124,191925,
%U 256146,340320,450204,593163,778416,1017698,1325784,1721157,2227050,2872422
%N Expansion of ((eta(q^2) * eta(q^14)) / (eta(q) * eta(q^7)))^3 in powers of q.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%H G. C. Greubel, <a href="/A120006/b120006.txt">Table of n, a(n) for n = 1..1000</a>
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F Expansion of q * (chi(-q) * chi(-q^7))^3 in powers of q where chi() is a Ramanujan theta function.
%F Euler transform of period 14 sequence [ 3, 0, 3, 0, 3, 0, 6, 0, 3, 0, 3, 0, 3, 0, ...].
%F G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - v - 6*u*v - 8*u*v^2.
%F G.f.: x * (Product_{k>0} (1 + x^k) * (1 + x^(7*k)))^3.
%F Convolution inverse of A132319.
%F a(n) ~ exp(2*Pi*sqrt(2*n/7)) / (8 * 2^(3/4) * 7^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Sep 07 2015
%e q + 3*q^2 + 6*q^3 + 13*q^4 + 24*q^5 + 42*q^6 + 73*q^7 + 123*q^8 + 201*q^9 + ...
%t nmax = 40; Rest[CoefficientList[Series[x * Product[((1 + x^k) * (1 + x^(7*k)))^3, {k, 1, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Sep 07 2015 *)
%t eta[q_] := q^(1/24)*QPochhammer[q]; Rest[CoefficientList[Series[(( eta[q^2]*eta[q^14])/(eta[q]*eta[q^7]))^3, {q, 0, 50}], q]] (* _G. C. Greubel_, Apr 19 2018 *)
%o (PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^14 + A) / (eta(x + A) * eta(x^7 + A)))^3, n))}
%Y Cf. A132319.
%K nonn
%O 1,2
%A _Michael Somos_, Jun 02 2006