login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120006
Expansion of ((eta(q^2) * eta(q^14)) / (eta(q) * eta(q^7)))^3 in powers of q.
3
1, 3, 6, 13, 24, 42, 73, 123, 201, 320, 504, 774, 1172, 1755, 2592, 3789, 5478, 7851, 11146, 15696, 21942, 30456, 42000, 57546, 78403, 106212, 143124, 191925, 256146, 340320, 450204, 593163, 778416, 1017698, 1325784, 1721157, 2227050, 2872422
OFFSET
1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q * (chi(-q) * chi(-q^7))^3 in powers of q where chi() is a Ramanujan theta function.
Euler transform of period 14 sequence [ 3, 0, 3, 0, 3, 0, 6, 0, 3, 0, 3, 0, 3, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - v - 6*u*v - 8*u*v^2.
G.f.: x * (Product_{k>0} (1 + x^k) * (1 + x^(7*k)))^3.
Convolution inverse of A132319.
a(n) ~ exp(2*Pi*sqrt(2*n/7)) / (8 * 2^(3/4) * 7^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015
EXAMPLE
q + 3*q^2 + 6*q^3 + 13*q^4 + 24*q^5 + 42*q^6 + 73*q^7 + 123*q^8 + 201*q^9 + ...
MATHEMATICA
nmax = 40; Rest[CoefficientList[Series[x * Product[((1 + x^k) * (1 + x^(7*k)))^3, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Sep 07 2015 *)
eta[q_] := q^(1/24)*QPochhammer[q]; Rest[CoefficientList[Series[(( eta[q^2]*eta[q^14])/(eta[q]*eta[q^7]))^3, {q, 0, 50}], q]] (* G. C. Greubel, Apr 19 2018 *)
PROG
(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^14 + A) / (eta(x + A) * eta(x^7 + A)))^3, n))}
CROSSREFS
Cf. A132319.
Sequence in context: A342853 A128517 A022568 * A263847 A061567 A293076
KEYWORD
nonn
AUTHOR
Michael Somos, Jun 02 2006
STATUS
approved