login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119372
G.f. satisfies: A(x) = 1 + x*(1-x-x^2)*A(x) + x^2*(3+2*x)*A(x)^2.
8
1, 1, 3, 9, 30, 104, 374, 1380, 5197, 19893, 77170, 302716, 1198729, 4785455, 19238706, 77821522, 316506253, 1293489529, 5309112257, 21876225899, 90459484106, 375256749620, 1561259497099, 6513108751281, 27238006266620
OFFSET
0,3
COMMENTS
Equals diagonal and row sums of pendular trinomial triangle A119369. Also equals convolution of A119370 and A119371 (central terms of A119369).
LINKS
FORMULA
G.f.: A(x) = (1-x+x^2+x^3 - sqrt( (1-x+x^2+x^3)^2 - 4*x^2*(3+2*x)) )/(2*x^2*(3+2*x)).
G.f.: A(x) = B(x)/(1+x - x*B(x)) = B(x)*G(x), where B(x) is g.f. of A119370, G(x) is g.f. of A119371.
Recurrence: 3*(n+2)*(2*n-1)*a(n) = (20*n^2 - 6*n - 11)*a(n-1) + (28*n^2 - 18*n + 5)*a(n-2) + (8*n^2-12*n-17)*a(n-3) - 3*(2*n^2 - 9*n + 1)*a(n-4) - 2*(n-5)*(2*n+1)*a(n-5). - Vaclav Kotesovec, Sep 11 2013
a(n) ~ sqrt(-8*z^2-5*z^3+2-5*z)*(4+2*z-z^3)^n*(-18-8*z+4*z^3+z^2)*(-35+8*z^3-12*z^2+2*z)/(242*sqrt(Pi)*n^(3/2)), where z = 1/(2*sqrt(3/(4+(280-24*sqrt(129))^(1/3) + 2*(35+3*sqrt(129))^(1/3)))) - 1/2*sqrt(8/3-1/3*(280-24*sqrt(129))^(1/3) - 2/3*(35+3*sqrt(129))^(1/3) + 8*sqrt(3/(4+(280-24*sqrt(129))^(1/3) + 2*(35+3*sqrt(129))^(1/3)))) = 0.225270426... is the root of the equation 1-2*z^2+z^4-4*z=0. - Vaclav Kotesovec, Sep 11 2013
MAPLE
m:= 30;
S:= series( (1-x+x^2+x^3 -(1+x)*sqrt(1-4*x-2*x^2+x^4))/(2*x^2*(3+2*x)), x, m+1);
seq(coeff(S, x, j), j = 0..m); # G. C. Greubel, Mar 17 2021
MATHEMATICA
CoefficientList[Series[(1-x+x^2+x^3-Sqrt[(1-x+x^2+x^3)^2-4*x^2*(3+2*x)])/(2*x^2*(3+2*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 11 2013 *)
PROG
(PARI) {a(n)=polcoeff(2/(1-x+x^2+x^3+sqrt((1-x+x^2+x^3)^2-4*x^2*(3+2*x)+x*O(x^n))), n)}
(Sage)
def A119372_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( (1-x+x^2+x^3 -(1+x)*sqrt(1-4*x-2*x^2+x^4))/(2*x^2*(3+2*x)) ).list()
A119372_list(30) # G. C. Greubel, Mar 17 2021
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!( (1-x+x^2+x^3 -(1+x)*Sqrt(1-4*x-2*x^2+x^4))/(2*x^2*(3+2*x)) )); // G. C. Greubel, Mar 17 2021
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 17 2006
STATUS
approved