OFFSET
1,1
COMMENTS
General formula: Integral_{x=0..1} (1+x^(3n))/sqrt(1-x^3) dx = G_3 * k_n = G_3*A146751(n)/A146752(n) = A118292*A146751(n)/A146752(n) where G_3 = (Gamma(1/3)^3)/(2^(1/3)*sqrt(3)*Pi) is the number in the present entry. For numerators of k_n see A146752, for denominators of k_n see A146753. - Artur Jasinski
gamma(1/6)*gamma(1/3)/(3*sqrt(Pi)) = gamma(1/3)^3/(2^(1/3)*sqrt(3)*Pi). - Harry J. Smith, May 09 2009
LINKS
Harry J. Smith, Table of n, a(n) for n = 1..4000
Eric Weisstein's World of Mathematics, Butterfly Curve
FORMULA
Equals A073005^3 / (A002194*A002580*A000796) [see Vidunas, arXiv:math.CA/0403510]. - R. J. Mathar, Nov 30 2008
EXAMPLE
2.8043642106509085223500381581005882709260444108... - Harry J. Smith, May 09 2009
MATHEMATICA
RealDigits[(Gamma[1/3]^3)/(2^(1/3) Sqrt[3] Pi), 10, 200] (* Artur Jasinski*)
PROG
(PARI) { allocatemem(932245000); default(realprecision, 4080); x=gamma(1/3)^3/(2^(1/3)*sqrt(3)*Pi); for (n=1, 4000, d=floor(x); x=(x-d)*10; write("b118292.txt", n, " ", d)); } \\ Harry J. Smith, Jun 20 2009
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Apr 22 2006
EXTENSIONS
Edited by N. J. A. Sloane, Nov 16 2008 at the suggestion of R. J. Mathar
STATUS
approved