login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1+2x^2)/((1-x)(1-x^2)(1-x^3)).
1

%I #16 May 24 2024 15:28:08

%S 1,1,4,5,8,11,15,18,24,28,34,40,47,53,62,69,78,87,97,106,118,128,140,

%T 152,165,177,192,205,220,235,251,266,284,300,318,336,355,373,394,413,

%U 434,455,477,498,522,544,568,592,617,641,668

%N Expansion of (1+2x^2)/((1-x)(1-x^2)(1-x^3)).

%C Partial sums of A117572.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1, 1, 0, -1, -1, 1).

%F G.f.: (1+2*x^2)/((1-x)*(1-x^2)*(1-x^3)).

%F a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6).

%F a(n) = sqrt(3)*cos(2*Pi*n/3+Pi/6)/9 - sin(2*Pi*n/3+Pi/6)/3 + 3*cos(Pi*n)/8 + (6n^2+20n+15)/24.

%F a(n) = floor((9*(-1)^n + 6*n^2 + 20*n + 23)/24). - _Tani Akinari_, Nov 09 2012

%F a(n) = 1 - n/4 + n^2/4 + 3/2*floor(n/2) + floor((n+1)/3). - _Vaclav Kotesovec_, Jun 15 2014

%t CoefficientList[Series[(1+2x^2)/((1-x)(1-x^2)(1-x^3)),{x,0,50}],x] (* or *) LinearRecurrence[{1,1,0,-1,-1,1},{1,1,4,5,8,11},60] (* _Harvey P. Dale_, Jun 06 2013 *)

%Y Cf. A117572.

%K easy,nonn

%O 0,3

%A _Paul Barry_, Mar 29 2006