login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117573
Expansion of (1+2x^2)/((1-x)(1-x^2)(1-x^3)).
1
1, 1, 4, 5, 8, 11, 15, 18, 24, 28, 34, 40, 47, 53, 62, 69, 78, 87, 97, 106, 118, 128, 140, 152, 165, 177, 192, 205, 220, 235, 251, 266, 284, 300, 318, 336, 355, 373, 394, 413, 434, 455, 477, 498, 522, 544, 568, 592, 617, 641, 668
OFFSET
0,3
COMMENTS
Partial sums of A117572.
FORMULA
G.f.: (1+2*x^2)/((1-x)*(1-x^2)*(1-x^3)).
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6).
a(n) = sqrt(3)*cos(2*Pi*n/3+Pi/6)/9 - sin(2*Pi*n/3+Pi/6)/3 + 3*cos(Pi*n)/8 + (6n^2+20n+15)/24.
a(n) = floor((9*(-1)^n + 6*n^2 + 20*n + 23)/24). - Tani Akinari, Nov 09 2012
a(n) = 1 - n/4 + n^2/4 + 3/2*floor(n/2) + floor((n+1)/3). - Vaclav Kotesovec, Jun 15 2014
MATHEMATICA
CoefficientList[Series[(1+2x^2)/((1-x)(1-x^2)(1-x^3)), {x, 0, 50}], x] (* or *) LinearRecurrence[{1, 1, 0, -1, -1, 1}, {1, 1, 4, 5, 8, 11}, 60] (* Harvey P. Dale, Jun 06 2013 *)
CROSSREFS
Cf. A117572.
Sequence in context: A353044 A293790 A190778 * A354937 A256535 A249669
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 29 2006
STATUS
approved