login
A116436
Numbers m which when sandwiched between two 1's give a multiple of m.
15
1, 11, 13, 77, 91, 137, 9091, 909091, 5882353, 10989011, 12987013, 52631579, 76923077, 90909091, 4347826087, 9090909091, 13698630137, 909090909091, 3448275862069, 10989010989011, 12987012987013, 76923076923077, 90909090909091, 9090909090909091, 909090909090909091
OFFSET
1,2
COMMENTS
All k-digit numbers that divide 10^{k+1} + 1. - Franklin T. Adams-Watters, Apr 23 2008
Notice the infinite pattern m = (90..90..90)91 with 1m1/m = 21, e.g., 1911/91 = 190911/9091 = 19090911/909091 = 21 (see A095372). - Zak Seidov, Apr 22 2008
Corresponding numbers k such that k * a(n) = 1.a(n).1 where '.' stands for concatenation are in A351320. - Bernard Schott, Feb 07 2022
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..1441 (terms 1..87 from Franklin T. Adams-Watters)
FORMULA
A351320(n) * a(n) = 1.a(n).1 where "." stands for concatenation. - Bernard Schott, Feb 07 2022
EXAMPLE
77 is a member since 1771 is a multiple of 77 (77*23).
MATHEMATICA
f[k_, d_] := Flatten@Table[Select[Divisors[k*(10^(i + 1) + 1)], IntegerLength[ # ] == i &], {i, d}]; f[1, 14] (* Ray Chandler, May 11 2007 *)
PROG
(PARI) A116436(k) = {local(l, d, lb, ub); d=divisors(10^(k+1)+1); l=[]; lb=10^(k-1); ub=10*lb; for(i=1, #d, if(d[i]>=lb&&d[i]<ub, l=concat(l, [d[i]]))); l}
l=[]; for(i=1, 60, l=concat(l, A116436(i))); l
(Python)
from sympy import isprime
from itertools import count, islice
def agen(): # generator of terms
yield 1
for k in count(2):
t = 10**(k+1) + 1
yield from (t//i for i in range(100, 10, -1) if t%i == 0)
print(list(islice(agen(), 25))) # Michael S. Branicky, Mar 26 2023 following Franklin T. Adams-Watters but removing factorization
CROSSREFS
Some subsequences, M such that k*M=1M1 for: A095372 \ {1} (k=21), A331630 (k=23), A351237 (k=83), A351238 (k=87), A351239 (k=101).
Sequence in context: A072580 A186640 A226242 * A185240 A056446 A023317
KEYWORD
base,nonn
AUTHOR
Giovanni Resta, Feb 15 2006
STATUS
approved