login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116387
Expansion of 1/(sqrt(1-2*x-3*x^2)*(2-M(x))), where M(x) is the g.f. of the Motzkin numbers A001006.
3
1, 2, 7, 22, 72, 234, 763, 2486, 8099, 26372, 85833, 279226, 907946, 2951066, 9587981, 31140034, 101104048, 328162170, 1064856217, 3454513274, 11204337056, 36332719182, 117795920249, 381848062066, 1237615088203, 4010710218384
OFFSET
0,2
COMMENTS
Binomial transform of A116383.
The substitution x-> x/(1+x+x^2) in the g.f. (this might be called an inverse Motzkin transform) yields the g.f. of A074331. - R. J. Mathar, Nov 10 2008
LINKS
FORMULA
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(n,j-k)*C(j,n-j).
Conjecture: n*(17*n-142)*a(n) + (17*n^2 + 95*n + 138)*a(n-1) + (-391*n^2 + 2488*n - 2908)*a(n-2) + (-17*n^2 - 603*n + 1892)*a(n-3) + 2*(697*n-2021)*(n-4)*a(n-4) + 60*(17*n-47)*(n-4)*a(n-5) = 0. - R. J. Mathar, Nov 15 2011
a(n) ~ (1+sqrt(5))^n * (5+sqrt(5)) / 10. - Vaclav Kotesovec, Feb 08 2014
MATHEMATICA
Table[Sum[Binomial[n, j-k]Binomial[j, n-j], {k, 0, n}, {j, 0, n}], {n, 0, 30}] (* Harvey P. Dale, Feb 08 2012 *)
PROG
(PARI) {a(n) = sum(k=0, n, sum(j=0, n, binomial(n, j-k)*binomial(j, n-j)))}; \\ G. C. Greubel, May 23 2019
(Magma) [(&+[ (&+[Binomial(n, j-k)*Binomial(j, n-j): j in [0..n]]) : k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 23 2019
(Sage) [sum( sum(binomial(n, j-k)*binomial(j, n-j) for j in (0..n)) for k in (0..n)) for n in (0..30)] # G. C. Greubel, May 23 2019
(GAP) List([0..30], n-> Sum([0..n], k-> Sum([0..n], j-> Binomial(n, j-k)*Binomial(j, n-j) ))) # G. C. Greubel, May 23 2019
CROSSREFS
Sequence in context: A289592 A292230 A162770 * A337805 A294006 A322573
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 12 2006
STATUS
approved