login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115203
Sixth column of triangle A115193 (called C(1,2)).
3
1, 11, 93, 723, 5437, 40323, 297469, 2191875, 16164861, 119443459, 884719613, 6570430467, 48927031293, 365303660547, 2734459846653, 20518848036867, 154328140087293, 1163305103130627, 8787088644243453
OFFSET
0,2
COMMENTS
Also fifth diagonal of triangle A115195, called Y(1,2), divided by 16.
LINKS
FORMULA
a(n) = A115195(4+n,1+n)/16, n>=0.
G.f.: (-1 + 5*x -2*x^2 + (1- 7*x + 8*x^2)*c(2*x))/(8*(1+x)*x^4) with the o.g.f. c(x) of A000108 (Catalan).
G.f. is also: ((1 + 2*x*c(2*x))*(2*x*c(2*x))^5)/(32*(1+x)*x^5).
a(n) = A115193(5+n,5), n>=0.
a(n) = (-1)^(n+1)* 2^(10 + 3*n)*(binomial(1/2,n+4)*Hypergeometric2F1(1, 7/2 + n, 5 + n, -8) + 7*binomial(1/2,n+5)*Hypergeometric2F1(1, 9/2 + n, 6 + n, -8) + 8*binomial(1/2,n+6)*Hypergeometric2F1(1, 11/2 + n, 7 + n, -8)). - G. C. Greubel, Feb 04 2016
a(n) ~ 2^(3*n+10) / (9*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Feb 05 2016
D-finite with recurrence (n+5)*a(n) +2*(-7*n-22)*a(n-1) +(49*n+43)*a(n-2) +124*a(n-3) +32*(-2*n+1)*a(n-4)=0. - R. J. Mathar, Mar 10 2022
MATHEMATICA
f[n_] := SeriesCoefficient[(1 - 11*x + 28*x^2 - 8*x^3 - (1 - 7*x + 8*x^2) Sqrt[1 - 8*x])/(32*x^5*(1 + x)), {x, 0, n}];
Table[f[n], {n, 0, 50}] (* G. C. Greubel, Feb 04 2016 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Feb 03 2006
STATUS
approved