login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115201
Number of even parts of partitions of n in the Abramowitz-Stegun (A-St) order.
1
0, 1, 0, 0, 1, 0, 1, 0, 2, 1, 0, 0, 1, 1, 0, 2, 1, 0, 1, 0, 2, 0, 1, 1, 3, 0, 2, 1, 0, 0, 1, 1, 1, 0, 2, 0, 2, 1, 1, 3, 0, 2, 1, 0, 1, 0, 2, 0, 2, 1, 1, 1, 3, 1, 0, 2, 0, 2, 4, 1, 1, 3, 0, 2, 1, 0, 0, 1, 1, 1, 1, 0, 2, 0, 2, 2, 2, 0, 1, 1, 1
OFFSET
0,9
COMMENTS
A conjugacy class of the symmetric group S_n with the cycle structure given by the partition, listed in the A-St order, consists of even, resp. odd, permutations if a(n,m) is even, resp. odd.
See A115198 for the parity of a(n,m) with 1 for even, 0 for odd (main entry).
See A115199 for the parity of a(n,m) with 0 for even, 1 for odd.
The parity of these numbers determines whether a conjugacy class of the symmetric group S_n, which is determined by its cycle structure, consists of even or odd permutations.
The row length sequence of this triangle is p(n)=A000041(n) (number of partitions).
FORMULA
a(n,m) = Sum_{j=1..floor(n/2)} e(n,m,2*j) with the exponents e(n,m,k) of the m-th partition of n in the A-St order; i.e. the sum of the exponents of the even parts of the partition (1^e(n,m,1),2^e(n,m,2),..., n^e(n,m,n)).
EXAMPLE
[0];[1, 0];[0, 1, 0];[1, 0, 2, 1, 0];[0, 1, 1, 0, 2, 1, 0];...
CROSSREFS
The sequence of row lengths is A066898 (total number of even parts in all partitions of n).
Sequence in context: A303942 A321928 A321917 * A354100 A118229 A172250
KEYWORD
nonn,easy,tabf
AUTHOR
Wolfdieter Lang, Feb 23 2006
STATUS
approved