OFFSET
0,5
COMMENTS
A transform of the Jacobsthal numbers. A059633 is the equivalent transform of the Fibonacci numbers.
Paul Curtz, Aug 05 2007, observes that the inverse binomial transform of 0,0,0,1,2,4,7,14,28,57,114,228,455,910,1820,... gives the same sequence up to signs. That is, the extended sequence is an eigensequence for the inverse binomial transform (an autosequence).
The round() function enables the closed (non-recurrence) formula to take a very simple form: see Formula section. This can be generalized without loss of simplicity to a(n) = round(b^n/c), where b and c are very small, incommensurate integers (c may also be an integer fraction). Particular choices of small integers for b and c produce a number of well-known sequences which are usually defined by a recurrence - see Cross Reference. - Ross Drewe, Sep 03 2009
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, arXiv:math/0205301 [math.CO], 2002. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
N. J. A. Sloane, Transforms
Index entries for linear recurrences with constant coefficients, signature (2,0,-1,2).
FORMULA
a(n) = 2a(n-1) - a(n-3) + 2a(n-4).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)*A001045(k).
a(n) = Sum_{k=0..n} binomial((n+k)/2,k)*A001045((n-k)/2)*(1+(-1)^(n-k))/2.
From Paul Curtz, Dec 16 2007: (Start)
a(n+1) - 2a(n) = A131531(n).
a(n) + a(n+3) = 2^n. (End)
a(n) = round(2^n/9). - Ross Drewe, Sep 03 2009
9*a(n) = 2^n + (-1)^n - 3*A010892(n). - R. J. Mathar, Mar 24 2018
MAPLE
A010892 := proc(n) op((n mod 6)+1, [1, 1, 0, -1, -1, 0]) ; end proc:
MATHEMATICA
CoefficientList[Series[x^3/(1-2x+x^3-2x^4), {x, 0, 40}], x] (* or *) LinearRecurrence[{2, 0, -1, 2}, {0, 0, 0, 1}, 40] (* Harvey P. Dale, Apr 30 2011 *)
PROG
(PARI) a(n)=2^n\/9 \\ Charles R Greathouse IV, Jun 05, 2011
(Magma) [Round(2^n/9): n in [0..40]]; // Vincenzo Librandi, Aug 11 2011
CROSSREFS
From Ross Drewe, Sep 03 2009: (Start)
Other sequences a(n) = round(b^n / c), where b and c are very small integers:
A001045 b = 2; c = 3
A007910 b = 2; c = 5
A016029 b = 2; c = 5/3
A077947 b = 2; c = 7
abs(A078043) b = 2; c = 7/3
A007051 b = 3; c = 2
A015518 b = 3; c = 4
A034478 b = 5; c = 2
A003463 b = 5; c = 4
A015531 b = 5; c = 6
(End)
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 28 2005
EXTENSIONS
Edited by N. J. A. Sloane, Dec 13 2007
STATUS
approved