%I #3 Mar 30 2012 18:36:51
%S 1,11,181,4031,114001,3917771,158531941,7380184511,388385146081,
%T 22791211333451,1475182111403221,104384110708795391,
%U 8015356365346614961,663741406196190241931,58957686544170035607301
%N Logarithmic derivative of A112942 such that a(n)=(1/6)*A112942(n+1) for n>0, where A112942 equals the INVERT transform (with offset) of sextuple factorials A008543.
%F G.f.: log(1+x + 6*x*[Sum_{n>=1} a(n)]) = Sum_{n>=1} a(n)/n*x^n.
%e log(1+x + 6*x*[x + 11*x^2 + 181*x^3 + 4031*x^4 + 114001*x^5 +...])
%e = x + 11/2*x^2 + 181/3*x^3 + 4031/4*x^4 + 114001/5*x^5 + ...
%o (PARI) {a(n)=local(F=1+x+x*O(x^n));for(i=1,n,F=1+x+6*x^2*deriv(F)/F); return(n*polcoeff(log(F),n,x))}
%Y Cf. A008543, A112942; A112934, A112935, A112936, A112937, A112938, A112939, A112940, A112941.
%K nonn
%O 1,2
%A _Paul D. Hanna_, Oct 09 2005