login
A112943
Logarithmic derivative of A112942 such that a(n)=(1/6)*A112942(n+1) for n>0, where A112942 equals the INVERT transform (with offset) of sextuple factorials A008543.
9
1, 11, 181, 4031, 114001, 3917771, 158531941, 7380184511, 388385146081, 22791211333451, 1475182111403221, 104384110708795391, 8015356365346614961, 663741406196190241931, 58957686544170035607301
OFFSET
1,2
FORMULA
G.f.: log(1+x + 6*x*[Sum_{n>=1} a(n)]) = Sum_{n>=1} a(n)/n*x^n.
EXAMPLE
log(1+x + 6*x*[x + 11*x^2 + 181*x^3 + 4031*x^4 + 114001*x^5 +...])
= x + 11/2*x^2 + 181/3*x^3 + 4031/4*x^4 + 114001/5*x^5 + ...
PROG
(PARI) {a(n)=local(F=1+x+x*O(x^n)); for(i=1, n, F=1+x+6*x^2*deriv(F)/F); return(n*polcoeff(log(F), n, x))}
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 09 2005
STATUS
approved