login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112242
E.g.f. exp( x*(1+x)/(1-x) ).
2
1, 1, 5, 25, 169, 1361, 12781, 136585, 1633745, 21594529, 312239701, 4898379641, 82810239865, 1500015354865, 28970936174909, 594083320767721, 12886811207794081, 294742414455540545, 7087332775240107685, 178707496551303048409, 4714241296084031285321, 129830157857411005318801
OFFSET
0,3
COMMENTS
In general, e.g.f. exp(x*(1+a*x)/(1-b*x)) has general term sum{i=0..n, sum{j=0..n, a^j*b^(n-i-j)*C(i,j)*C(n-j-1,n-i-j)*n!/i!}}.
LINKS
FORMULA
E.g.f.: exp(x*(1+x)/(1-x)).
a(n) = Sum_{i=0..n} Sum_{j=0..n} C(i, j)*C(n-j-1, n-i-j)*n!/i!.
D-finite with recurrence: a(n) = (2*n-1)*a(n-1) - (n-4)*(n-1)*a(n-2) - (n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Jun 27 2013
a(n) ~ 2^(-1/4)*exp(2*sqrt(2*n)-2-n)*n^(n-1/4). - Vaclav Kotesovec, Jun 27 2013
MATHEMATICA
Range[0, 18]!*CoefficientList[ Series[ Exp[x(1+x)/(1-x)], {x, 0, 18}], x] (* Zerinvary Lajos, Mar 23 2007 *)
PROG
(PARI)
x='x+O('x^33);
Vec(serlaplace(exp( x*(1+x)/(1-x) )))
/* Joerg Arndt, Sep 14 2012 */
CROSSREFS
Sequence in context: A134007 A125794 A109793 * A035341 A258369 A137383
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Aug 29 2005
STATUS
approved