OFFSET
0,3
COMMENTS
In general, e.g.f. exp(x*(1+a*x)/(1-b*x)) has general term sum{i=0..n, sum{j=0..n, a^j*b^(n-i-j)*C(i,j)*C(n-j-1,n-i-j)*n!/i!}}.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..441
FORMULA
E.g.f.: exp(x*(1+x)/(1-x)).
a(n) = Sum_{i=0..n} Sum_{j=0..n} C(i, j)*C(n-j-1, n-i-j)*n!/i!.
D-finite with recurrence: a(n) = (2*n-1)*a(n-1) - (n-4)*(n-1)*a(n-2) - (n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Jun 27 2013
a(n) ~ 2^(-1/4)*exp(2*sqrt(2*n)-2-n)*n^(n-1/4). - Vaclav Kotesovec, Jun 27 2013
MATHEMATICA
Range[0, 18]!*CoefficientList[ Series[ Exp[x(1+x)/(1-x)], {x, 0, 18}], x] (* Zerinvary Lajos, Mar 23 2007 *)
PROG
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Aug 29 2005
STATUS
approved