login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112241
Expansion of exp(x/(1-2x-2x^2)).
1
1, 1, 5, 49, 601, 9281, 170941, 3662065, 89368049, 2446433281, 74212220341, 2470200090161, 89490288001225, 3504680581915969, 147513939627740141, 6639918363792119281, 318237954786998696161, 16178761263710217424385
OFFSET
0,3
COMMENTS
In general, e.g.f. exp(x/(1-ax-bx^2)) has general term n!*sum{i=0..n, sum{j=0..n, a^j*(b/a)^(n-i-j)*C(i+j-1,j)C(j,n-i-j)/i!}}.
LINKS
FORMULA
E.g.f.: exp(x/(1-2*x-2*x^2)).
a(n) = n!*sum{i=0..n, sum{j=0..n, 2^j*C(i+j-1,j)*C(j,n-i-j)/i! } }.
Recurrence: a(n) = (4*n-3)*a(n-1) - 2*(n-2)*(n-1)*(4*n-13)*a(n-3) - 4*(n-4)*(n-3)*(n-2)*(n-1)*a(n-4). - Vaclav Kotesovec, Aug 15 2013
a(n) ~ 2^(-3/4)*3^(-1/8) * (1+sqrt(3))^n * exp(3^(-1/4)*sqrt(2*n)-n-1/12) * n^(n-1/4) * (1-7/(6*3^(3/4)*sqrt(2*n))). - Vaclav Kotesovec, Aug 15 2013
MATHEMATICA
With[{nn=20}, CoefficientList[Series[Exp[x/(1-2x-2x^2)], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, May 12 2012 *)
CROSSREFS
Sequence in context: A370097 A274671 A371364 * A216483 A243945 A297513
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Aug 29 2005
STATUS
approved