login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111130
Numerator of (n+2)^(n+2)/(n+1)^(n+1) - (n+1)^(n+1)/n^n.
2
3, 11, 295, 18839, 2178311, 396789539, 104534716847, 37582455061871, 17677524703000879, 10535586945520548779, 7758255095720238886679, 6916955444929558486935047, 7342438845112941396534404087, 9150463033951198007724075565619, 13229286823498332297225524829163231
OFFSET
0,1
COMMENTS
(n+2)^(n+2)/(n+1)^(n+1) - (n+1)^(n+1)/n^n converges very rapidly to e.
These can be prime, as is the case for a(0) = 3, a(1) = 11, a(4) = 18839, a(8) = 37582455061871. These are always odd, just as all but the first denominator of A090205 is even. - Jonathan Vos Post, Oct 19 2005
LINKS
H. J. Brothers and J. A. Knox, New closed-form approximations to the logarithmic constant e, Math. Intelligencer, 20 (1998), 25-29.
EXAMPLE
3, 11/4, 295/108, 18839/6912, 2178311/800000, 396789539/145800000, 104534716847/38423222208, ...
MATHEMATICA
Join[{3}, Numerator[Table[(n + 2)^(n + 2)/(n + 1)^(n + 1) - (n + 1)^(n + 1)/n^n, {n, 1, 25}]]] (* G. C. Greubel, Apr 09 2018 *)
PROG
(PARI) a(n) = numerator((n+2)^(n+2)/(n+1)^(n+1) - (n+1)^(n+1)/n^n); \\ Michel Marcus, Jun 27 2015
(Magma) [Numerator((n+2)^(n+2)/(n+1)^(n+1) - (n+1)^(n+1)/n^n): n in [0..30]]; // G. C. Greubel, Apr 09 2018
CROSSREFS
Denominators are 1, 4, 108, 6912, ... - see A090205.
Sequence in context: A205771 A373342 A097423 * A337415 A264725 A374558
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Oct 17 2005
STATUS
approved