login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097423
Numerator of Product_{k=1..n} H(k), where H(k) = Sum_{j=1..k} 1/j, the k-th harmonic number.
2
1, 3, 11, 275, 7535, 73843, 1276429, 138766067, 989263291643, 7301752355616983, 55566999221913933083, 434538985460750767066613, 3482368080874980096524258963, 28534304884670510863221395297153
OFFSET
1,2
EXAMPLE
(1)(1 + 1/2)(1 + 1/2 + 1/3) = 1*(3/2)*(11/6) = 11/4, so a(3) = 11.
MATHEMATICA
a[n_] := Numerator[ Product[ HarmonicNumber[k], {k, 1, n}]]; Table[ a[n], {n, 14}] (* Robert G. Wilson v, Aug 26 2004 *)
Numerator[Rest[FoldList[Times, 1, HarmonicNumber[Range[20]]]]] (* Harvey P. Dale, Apr 02 2015 *)
PROG
(PARI) hh(n)=sum(i=1, n, 1/i); ff(n)=numerator(prod(i=1, n, hh(i))); for (i=1, 30, print1(ff(i), ", ")) \\ Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com), Aug 23 2004
CROSSREFS
Cf. A097424.
Sequence in context: A112357 A205771 A373342 * A111130 A337415 A264725
KEYWORD
frac,nonn
AUTHOR
Leroy Quet, Aug 21 2004
EXTENSIONS
More terms from Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com) and Robert G. Wilson v, Aug 23 2004
STATUS
approved