login
A108553
Square array, read by antidiagonals, where row n equals the crystal ball sequence for D_n lattice.
12
1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 13, 13, 7, 1, 1, 25, 55, 25, 9, 1, 1, 41, 169, 147, 41, 11, 1, 1, 61, 411, 625, 309, 61, 13, 1, 1, 85, 853, 2051, 1681, 561, 85, 15, 1, 1, 113, 1583, 5577, 6981, 3721, 923, 113, 17, 1, 1, 145, 2705, 13203, 23673, 18733, 7225, 1415, 145, 19, 1
OFFSET
0,5
COMMENTS
Rows 0 and 2 are included by extension since they fit the formula. Row 1 equals the odd numbers in order that triangle A108556 maintains that A108556(n,n-1) = (n/2)*A108556(n,n) for all n>=1, where row n of triangle A108556 equals the inverse binomial transform of row n of this square array.
FORMULA
T(n, k) = Sum_{j=0..n} C(n+k-j, k-j)*[C(2*n, 2*j) - 2*j*(n-j)*C(n, j)/(n-1)] for n>1, with T(0, k)=1, T(1, k)=2*k+1.
EXAMPLE
Square array begins:
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...
1,3,5,7,9,11,13,15,17,19,21,23,25,27,...
1,5,13,25,41,61,85,113,145,181,221,265,...
1,13,55,147,309,561,923,1415,2057,2869,...
1,25,169,625,1681,3721,7225,12769,21025,...
1,41,411,2051,6981,18733,42783,86983,...
1,61,853,5577,23673,76389,204205,476113,...
1,85,1583,13203,68853,264825,824083,...
Inverse binomial transform of rows gives
rows of triangle A108556:
1,
1,2,
1,4,4,
1,12,30,20,
1,24,120,192,96,
1,40,330,940,1080,432, ...
Product of the g.f. of row n and (1-x)^(n+1)
generates the symmetric triangle A108558:
1;
1,1;
1,2,1;
1,9,9,1;
1,20,54,20,1;
1,35,180,180,35,1; ...
The row sums of triangle A108558 equals the
main diagonal of triangle A108556.
PROG
(PARI) T(n, k)=if(n<0 || k<0, 0, if(n==0 || k==0, 1, if(n==1, 2*k+1, sum(j=0, k, binomial(n+k-j, k-j)*(binomial(2*n, 2*j)-2*n*binomial(n-2, j-1))))))
CROSSREFS
Cf. A108554 (diagonal), A108555 (antidiagonal sums), A108556, A108558, A001844 (row 2), A005902 (row 3), A007204 (row 4), A008356 (row 5), A008358 (row 6), A008360 (row 7), A008362 (row 8), A008377 (row 9), A008379 (row 10).
Sequence in context: A171229 A125690 A176481 * A176700 A300539 A300966
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Jun 10 2005
STATUS
approved