login
A008362
Crystal ball sequence for D_8 lattice.
4
1, 113, 2705, 28129, 177697, 807505, 2908337, 8818625, 23429185, 56070193, 123302609, 252868001, 489082465, 899992081, 1586639089, 2694819713, 4429746305, 7074058225, 11009657617, 16743877985
OFFSET
0,2
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Index entries for linear recurrences with constant coefficients, signature (9, -36, 84, -126, 126, -84, 36, -9, 1).
FORMULA
a(n) = 248/315*n^8+992/315*n^7+32/3*n^6+944/45*n^5+144/5*n^4+1184/45*n^3+992/63*n^2+584/105*n+1 (see MAPLE line).
G.f.: (1+104*x+1724*x^2+7768*x^3+12550*x^4+7768*x^5+1724*x^6+104*x^7+x^8)/(1-x)^9. [Colin Barker, Mar 16 2012]
MAPLE
248/315*n^8+992/315*n^7+32/3*n^6+944/45*n^5+144/5*n^4+1184/45*n^3+992/63*n^2+584/105*n+1;
MATHEMATICA
CoefficientList[Series[(1+104*x+1724*x^2+ 7768* x^3+12550*x^4+7768*x^5+ 1724*x^6+ 104*x^7+ x^8)/(1-x)^9, {x, 0, 1003}], x] (* Vincenzo Librandi, Apr 16 2012 *)
LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {1, 113, 2705, 28129, 177697, 807505, 2908337, 8818625, 23429185}, 20] (* Harvey P. Dale, Sep 20 2024 *)
PROG
(Magma) [248/315*n^8+992/315*n^7+32/3*n^6+944/45*n^5+ 144/5*n^4+1184/45*n^3+992/63*n^2+584/105*n+1: n in [0..30]]; // Vincenzo Librandi, Apr 16 2012
CROSSREFS
Sequence in context: A079098 A187519 A301529 * A262074 A200854 A012031
KEYWORD
nonn,easy
STATUS
approved