login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107857
a(n) = floor[(phi + n mod 2)*a(n-1)], a(1)=1.
5
1, 1, 2, 3, 7, 11, 28, 45, 117, 189, 494, 799, 2091, 3383, 8856, 14329, 37513, 60697, 158906, 257115, 673135, 1089155, 2851444, 4613733, 12078909, 19544085, 51167078, 82790071, 216747219, 350704367, 918155952, 1485607537, 3889371025
OFFSET
1,3
COMMENTS
A switched sequence with alternating limits of the golden mean and its square. The sequence uses only one initial term. Note that Limit[a[n]/a[n-1],n->Infinity] does not exist.
The consecutive pairs (2,3), (7,11), (28,45) occur as pairs in columns 2 and 3 of the Wythoff array, A035513. Suppose (l(n)) and (u(n)) are the lower and upper Beatty sequences of positive irrational numbers r<s, where 1/r+1/s=1. Write l for (l(n)), lu for (l(u(n))), ulu for u(l(u(n)))), etc. Then this sequence is (u, lu, ulu, lulu, ...) = ([s], [r[s]], [s[r[s]]], ...), where [ ] denotes the floor function. For this sequence, r is the golden mean. -- Clark Kimberling, Nov 24 2010
FORMULA
G.f. -x*(-1+3*x^2-x^3+x^4) / ( (x-1)*(x^4+4*x^2-1) ). - R. J. Mathar, Sep 11 2011
a(2n+2) = (1/2)*(Fib(3n+2) + 1), a(2n+1) = (1/2)*(Fib(3n+1) + 1).
MATHEMATICA
Phi = N[(Sqrt[5] + 1)/2] F[1] = 1; F[n__] := F[n] = If[Mod[n, 2] == 0, Floor[Phi*F[n - 1]], Floor[(Phi + 1)*F[n -1]]] a = Table[F[n], {n, 1, 50}]
LinearRecurrence[{1, 4, -4, 1, -1}, {1, 1, 2, 3, 7}, 40] (* Harvey P. Dale, Mar 31 2023 *)
PROG
(PARI) a(n)=if(n<2, 1, floor((phi+n%2)*a(n-1)))
(Magma) [ n eq 1 select 1 else Floor(((Sqrt(5)+1)/2+(n mod 2))*Self(n-1)): n in [1..35] ];
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Jun 12 2005
EXTENSIONS
Edited and better name by Ralf Stephan, Nov 24 2010
STATUS
approved