login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107854
G.f. x*(x^2+1)*(x^3-x-1)/((2*x^3+x^2-1)*(x^4+1)).
1
0, 1, 1, 2, 3, 3, 5, 8, 11, 19, 29, 42, 67, 99, 149, 232, 347, 531, 813, 1226, 1875, 2851, 4325, 6600, 10027, 15251, 23229, 35306, 53731, 81763, 124341, 189224, 287867, 437907, 666317, 1013642, 1542131, 2346275, 3569413, 5430536, 8261963, 12569363
OFFSET
0,4
COMMENTS
The sequence A078028 is given by 1em[I* ]forzapseq and is from the same "batch" (i.e., corresponding to the same floretion and symmetry settings) as A107849, A107850, A107851, A107852, A107853 and (a(n)).
Floretion Algebra Multiplication Program, FAMP Code: 1dia[I]forzapseq[(.5i' + .5j' + .5'ki' + .5'kj')*(.5'i + .5'j + .5'ik' + .5'jk')], 1vesforzap = A000004
FORMULA
a(n) = A159284(n) + A014017(n+5).
MATHEMATICA
CoefficientList[Series[x(x^2+1)(x^3-x-1)/((2x^3+x^2-1)(x^4+1)), {x, 0, 50}], x] (* or *) LinearRecurrence[{0, 1, 2, -1, 0, 1, 2}, {0, 1, 1, 2, 3, 3, 5}, 50] (* Harvey P. Dale, Jun 21 2022 *)
PROG
(PARI) a(n)=([0, 1, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0; 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 1; 2, 1, 0, -1, 2, 1, 0]^n*[0; 1; 1; 2; 3; 3; 5])[1, 1] \\ Charles R Greathouse IV, Oct 03 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, May 25 2005
STATUS
approved