login
A106335
Decimal expansion of the radius of convergence of the g.f. of A106336; equals constant A106333 divided by constant A106334.
6
3, 2, 2, 6, 2, 7, 6, 3, 2, 6, 9, 2, 1, 9, 1, 1, 3, 3, 0, 9, 6, 9, 8, 7, 1, 3, 8, 6, 7, 3, 9, 8, 3, 0, 2, 3, 3, 2, 2, 9, 0, 4, 2, 4, 3, 7, 4, 6, 7, 1, 7, 4, 5, 2, 1, 6, 0, 5, 6, 2, 0, 9, 1, 2, 4, 5, 5, 4, 8, 6, 2, 6, 7, 4, 1, 1, 1, 5, 0, 6, 4, 9, 7, 4, 7, 1, 2, 3, 7, 3, 9, 9, 1, 2, 2, 1, 4, 7, 8, 5, 3, 7, 1, 9, 0
OFFSET
0,1
COMMENTS
The g.f. of A106336 equals (1/x)*Series_Reversion( x*eta(x)/eta(x^2)^2 ).
This constant is very close to 2^(3/2) / (3*sqrt(e*Pi)) = 0.3226276326921911330637735905807475397715626276499133673167401123748... - Vaclav Kotesovec, Aug 02 2017
FORMULA
Constant equals the ratio x/F(x) evaluated at the constant x that satisfies: F(x) - x*F'(x) = 0, where F(x) = Sum_{n>=0} x^(n*(n+1)/2).
EXAMPLE
x/F(x)=0.322627632692191133096987138673983023322904243746717452160562...
where F(x) = 1 + x + x^3 + x^6 + x^10 + x^15 + x^21 + x^28 + ...
so F(x) = 1.9873697211846841452692897833444126... (A106334)
at x = 0.6411803884299545796456448886283011... (A106333).
MATHEMATICA
digits = 105; x0 = x /. FindRoot[ Sum[(1 - n*(n+1)/2)*x^(n*(n+1)/2), {n, 0, digits}], {x, 1/2}, WorkingPrecision -> digits+5]; f[x_] := EllipticTheta[2, 0, Sqrt[x]]/(2*x^(1/8)); x0/f[x0] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Mar 05 2013 *)
PROG
(PARI) A106333=solve(x=.6, .7, sum(n=0, 100, (1-n*(n+1)/2)*x^(n*(n+1)/2))); A106334=sum(n=0, 100, A106333^(n*(n+1)/2)); A106335=A106333/A106334
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Paul D. Hanna, Apr 29 2005
STATUS
approved