login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105374
a(n) = 4*n^3 + 4*n.
6
0, 8, 40, 120, 272, 520, 888, 1400, 2080, 2952, 4040, 5368, 6960, 8840, 11032, 13560, 16448, 19720, 23400, 27512, 32080, 37128, 42680, 48760, 55392, 62600, 70408, 78840, 87920, 97672, 108120, 119288, 131200, 143880, 157352, 171640, 186768
OFFSET
0,2
COMMENTS
For n > 1, the number of straight lines with n points in a 4-dimensional hypercube of with n points on each edge is 4n^3 + 12n^2 + 16n + 8, i.e., A105374(n+1).
FORMULA
a(n) = A002522(n)*A008586(n).
G.f.: 8*x*(1 + x + x^2)/(1-x)^4. - Colin Barker, May 24 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 26 2012
a(n) = 8* A006003(n). - Bruce J. Nicholson, Apr 18 2017
EXAMPLE
a(5) = 4*5^3 + 4*5 = 500 + 20 = 520.
MATHEMATICA
CoefficientList[Series[8*x*(1+x+x^2)/(1-x)^4, {x, 0, 40}], x] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 8, 40, 120}, 50] (* Vincenzo Librandi, Jun 26 2012 *)
PROG
(Magma) I:=[0, 8, 40, 120]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi, Jun 26 2012
(PARI) a(n)=4*n^3+4*n \\ Charles R Greathouse IV, Oct 16 2015
CROSSREFS
Essentially row or column of A102728 and A105374.
Cf. A006003.
Sequence in context: A279273 A143943 A135796 * A162668 A227733 A191903
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Apr 02 2005
STATUS
approved