login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103246
Numbers y, without duplication, in Pythagorean triples x,y,z where x,y,z are relatively prime composite numbers.
7
21, 27, 33, 55, 57, 63, 75, 77, 81, 87, 91, 93, 99, 105, 111, 115, 117, 119, 123, 125, 129, 133, 135, 143, 147, 153, 155, 161, 165, 171, 177, 183, 185, 187, 189, 195, 201, 203, 207, 213, 215, 217, 219, 225, 235, 237, 243, 247, 249, 253, 255, 259, 265, 267, 273
OFFSET
1,1
COMMENTS
The example is the smallest such triple in terms of x. In terms of y, 220^2 + 21^2 = 221^2 is the smallest such triple.
Evidently the triples here are ordered so that x is even and y is odd. - Robert Israel, Oct 22 2018
LINKS
MathForFun, Pythagorean triples [Cached copy]
Chenglong Zou, Peter Otzen, Cino Hilliard, Pythagorean triplets, digest of 6 messages in mathfun Yahoo group, Mar 19, 2005.
EXAMPLE
x=16, y=63, 16^2 + 63^2 = 65^2. 63 is the 6th entry in the list.
MAPLE
N:= 1000: # to get all terms <= N
Res:= NULL:
for m from 1 to N by 2 do
for n from 1 to m-2 by 2 while m*n <= N do
if igcd(m, n) > 1 then next fi;
if not isprime(m*n) and not isprime((m^2+n^2)/2) then
Res:= Res, m*n;
fi
od od:
sort(convert({Res}, list)); # Robert Israel, Oct 22 2018
PROG
(PARI) pythtri(n) = { local(a, b, c=0, k, x, y, z, vy, j); w = vector(n*n); for(a=1, n, for(b=1, n, x=2*a*b; y=b^2-a^2; z=b^2+a^2; if(y > 0 &!isprime(x) &!isprime(y) &!isprime(z), if(gcd(x, y)==1&gcd(x, z)==1&gcd(y, z)==1, c++; w[c]=y; ) ) ) ); vy=vector(c); w=vecsort(w); for(j=1, n*n, if(w[j]>0, k++; vy[k]=w[j]; ) ); for(j=1, 200, if(vy[j+1]<>vy[j], print1(vy[j]", ")) ) }
CROSSREFS
Sequence in context: A364414 A365081 A352096 * A206347 A362008 A247316
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Mar 19 2005
STATUS
approved