OFFSET
1,2
COMMENTS
FORMULA
For n > k >= 1: 0 = Sum_{m=k..n} C(n-k, m-k)*(-m^2-m)^(n-m)*T(m, k).
For n > k >= 1: 0 = Sum_{j=k..n} C(n-k, j-k)*(-k^2-k)^(j-k)*T(n, j).
EXAMPLE
This triangle begins:
1;
2, 1;
20, 6, 1;
512, 108, 12, 1;
25392, 4104, 336, 20, 1;
2093472, 273456, 17568, 800, 30, 1;
260555392, 28515456, 1500288, 54800, 1620, 42, 1;
45819233280, 4311418752, 191549952, 5808000, 140400, 2940, 56, 1;
10849051434240, 894918533760, 34352605440, 887256000, 18033840, 313992, 4928, 72, 1; ...
Rows of unreduced fractions T(n,k)/(n-k)! begin:
[1/0!],
[2/1!, 1/0!],
[20/2!, 6/1!, 1/0!],
[512/3!, 108/2!, 12/1!, 1/0!],
[25392/4!, 4104/3!, 336/2!, 20/1!, 1/0!],
[2093472/5!, 273456/4!, 17568/3!, 800/2!, 30/1!, 1/0!],...
forming the inverse of matrix P where P(n,k) = (-1)^(n-k)*(k^2+k)^(n-k)/(n-k)!:
[1/0!],
[ -2/1!, 1/0!],
[4/2!, -6/1!, 1/0!],
[ -8/3!, 36/2!, -12/1!, 1/0!],
[16/4!, -216/3!, 144/2!, -20/1!, 1/0!], ...
MATHEMATICA
nmax = 9;
P = Table[If[n >= k, (-k^2-k)^(n-k)/(n-k)!, 0], {n, 1, nmax}, {k, 1, nmax}] // Inverse;
T[n_, k_] := If[n < k || k < 1, 0, P[[n, k]]*(n - k)!];
Table[T[n, k], {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 09 2018, from PARI *)
PROG
(PARI) {T(n, k)=local(P); if(n>=k&k>=1, P=matrix(n, n, r, c, if(r>=c, (-c^2-c)^(r-c)/(r-c)!))); return(if(n<k||k<1, 0, (P^-1)[n, k]*(n-k)!))}
for(n=1, 10, for(k=1, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
KEYWORD
AUTHOR
Paul D. Hanna, Feb 02 2005
STATUS
approved