login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 3*a(n-1) + 4*a(n-2), a(0)=a(1)=1.
11

%I #74 Dec 10 2022 01:44:06

%S 1,1,7,25,103,409,1639,6553,26215,104857,419431,1677721,6710887,

%T 26843545,107374183,429496729,1717986919,6871947673,27487790695,

%U 109951162777,439804651111,1759218604441,7036874417767,28147497671065

%N a(n) = 3*a(n-1) + 4*a(n-2), a(0)=a(1)=1.

%C Binomial transform of A102901.

%C Hankel transform is = 1,6,0,0,0,0,0,0,0,0,0,0,... - _Philippe Deléham_, Nov 02 2008

%D Maria Paola Bonacina and Nachum Dershowitz, Canonical Inference for Implicational Systems, in Automated Reasoning, Lecture Notes in Computer Science, Volume 5195/2008, Springer-Verlag.

%H Reinhard Zumkeller, <a href="/A102900/b102900.txt">Table of n, a(n) for n = 0..1000</a>

%H A. Abdurrahman, <a href="https://arxiv.org/abs/1909.10889">CM Method and Expansion of Numbers</a>, arXiv:1909.10889 [math.NT], 2019.

%H Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, <a href="http://arxiv.org/abs/1503.01796">A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata</a>, arXiv:1503.01796 [math.CO], 2015; see also the <a href="http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/CAcount.html">Accompanying Maple Package</a>.

%H Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, <a href="http://arxiv.org/abs/1503.04249">Odd-Rule Cellular Automata on the Square Grid</a>, arXiv:1503.04249 [math.CO], 2015.

%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015.

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,4).

%F G.f.: (1-2*x)/(1-3*x-4*x^2).

%F a(n) = (2*4^n + 3*(-1)^n)/5.

%F a(n) = ceiling(4^n/5) + floor(4^n/5) = (ceiling(4^n/5))^2 - (floor(4^n/5))^2.

%F a(n) + a(n+1) = 2^(2*n+1) = A004171(n).

%F a(n) = Sum_{k=0..n} binomial(2*n-k, 2*k)*2^k. - _Paul Barry_, Jan 20 2005

%F a(n) = upper left term in the 2 X 2 matrix [1,3; 2,2]^n. - _Gary W. Adamson_, Mar 14 2008

%F G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(8*4^k-3*(-1)^k)/(x*(8*4^k-3*(-1)^k) + (2*4^k+3*(-1)^k)/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, May 28 2013

%F a(n) = 2^(2*n-1) - a(n-1), a(1)=1. - _Ben Paul Thurston_, Dec 27 2015; corrected by _Klaus Purath_, Aug 02 2020

%F From _Klaus Purath_, Aug 02 2020: (Start)

%F a(n) = 4*a(n-1) + 3*(-1)^n.

%F a(n) = 6*4^(n-2) + a(n-2), n>=2. (End)

%t a[n_]:=(MatrixPower[{{2,2},{3,1}},n].{{2},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* _Vladimir Joseph Stephan Orlovsky_, Feb 20 2010 *)

%t LinearRecurrence[{3, 4}, {1, 1}, 30] (* _Vincenzo Librandi_, Dec 28 2015 *)

%o (Haskell)

%o a102900 n = a102900_list !! n

%o a102900_list = 1 : 1 : zipWith (+)

%o (map (* 4) a102900_list) (map (* 3) $ tail a102900_list)

%o -- _Reinhard Zumkeller_, Feb 13 2015

%o (Magma) [n le 2 select 1 else 3*Self(n-1)+4*Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Dec 28 2015

%o (PARI) a(n)=([0,1; 4,3]^n*[1;1])[1,1] \\ _Charles R Greathouse IV_, Mar 28 2016

%o (SageMath)

%o A102900=BinaryRecurrenceSequence(3,4,1,1)

%o [A102900(n) for n in range(51)] # _G. C. Greubel_, Dec 09 2022

%Y Cf. A001045, A004171, A046717, A086901, A102901, A247666 (which appears to be the run length transform of this sequence).

%K easy,nonn

%O 0,3

%A _Paul Barry_, Jan 17 2005