login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102900
a(n) = 3*a(n-1) + 4*a(n-2), a(0)=a(1)=1.
11
1, 1, 7, 25, 103, 409, 1639, 6553, 26215, 104857, 419431, 1677721, 6710887, 26843545, 107374183, 429496729, 1717986919, 6871947673, 27487790695, 109951162777, 439804651111, 1759218604441, 7036874417767, 28147497671065
OFFSET
0,3
COMMENTS
Binomial transform of A102901.
Hankel transform is = 1,6,0,0,0,0,0,0,0,0,0,0,... - Philippe Deléham, Nov 02 2008
REFERENCES
Maria Paola Bonacina and Nachum Dershowitz, Canonical Inference for Implicational Systems, in Automated Reasoning, Lecture Notes in Computer Science, Volume 5195/2008, Springer-Verlag.
LINKS
A. Abdurrahman, CM Method and Expansion of Numbers, arXiv:1909.10889 [math.NT], 2019.
Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.
Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
FORMULA
G.f.: (1-2*x)/(1-3*x-4*x^2).
a(n) = (2*4^n + 3*(-1)^n)/5.
a(n) = ceiling(4^n/5) + floor(4^n/5) = (ceiling(4^n/5))^2 - (floor(4^n/5))^2.
a(n) + a(n+1) = 2^(2*n+1) = A004171(n).
a(n) = Sum_{k=0..n} binomial(2*n-k, 2*k)*2^k. - Paul Barry, Jan 20 2005
a(n) = upper left term in the 2 X 2 matrix [1,3; 2,2]^n. - Gary W. Adamson, Mar 14 2008
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(8*4^k-3*(-1)^k)/(x*(8*4^k-3*(-1)^k) + (2*4^k+3*(-1)^k)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 28 2013
a(n) = 2^(2*n-1) - a(n-1), a(1)=1. - Ben Paul Thurston, Dec 27 2015; corrected by Klaus Purath, Aug 02 2020
From Klaus Purath, Aug 02 2020: (Start)
a(n) = 4*a(n-1) + 3*(-1)^n.
a(n) = 6*4^(n-2) + a(n-2), n>=2. (End)
MATHEMATICA
a[n_]:=(MatrixPower[{{2, 2}, {3, 1}}, n].{{2}, {1}})[[2, 1]]; Table[a[n], {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
LinearRecurrence[{3, 4}, {1, 1}, 30] (* Vincenzo Librandi, Dec 28 2015 *)
PROG
(Haskell)
a102900 n = a102900_list !! n
a102900_list = 1 : 1 : zipWith (+)
(map (* 4) a102900_list) (map (* 3) $ tail a102900_list)
-- Reinhard Zumkeller, Feb 13 2015
(Magma) [n le 2 select 1 else 3*Self(n-1)+4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 28 2015
(PARI) a(n)=([0, 1; 4, 3]^n*[1; 1])[1, 1] \\ Charles R Greathouse IV, Mar 28 2016
(SageMath)
A102900=BinaryRecurrenceSequence(3, 4, 1, 1)
[A102900(n) for n in range(51)] # G. C. Greubel, Dec 09 2022
CROSSREFS
Cf. A001045, A004171, A046717, A086901, A102901, A247666 (which appears to be the run length transform of this sequence).
Sequence in context: A247173 A141627 A289606 * A155271 A200152 A255280
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jan 17 2005
STATUS
approved